针对配电网综合规划问题提出一种模糊微分演化算法。
To solve the comprehensive planning of distribution networks, a fuzzy differential evolution algorithm is proposed.
在物理学中,物理参量随时间的演化往往是由非线性的偏微分方程支配的。
In physics, the physical parameter evolution along with the time is often controlled by the non-linear partial differential equation.
建立了渗流边界的随机微分方程,揭示了渗流边界形貌的演化机理。
Moreover, the stochastic differential equation of seepage boundary is proposed and the mechanism of seepage evolution is analyzed.
这组算子的统计平均值随时间的演化满足一个封闭的一阶线性微分方程组。
And the evolution of the statistical average values of the set of operators with time satisfy a group of one-order linearly differential equations.
采用常微分方程理论研究了无旋波近似下双光子J-C模型系统的时间演化。
The time evolution of system in two photon Jaynes Cummings (J C) model without rotating waves approximation (RWA) is obtained by using the theory of ordinary differential equations.
利用欧拉公式,得到曲线演化的偏微分方程。那两条曲线将在想得到的边界停止。
With Eulerian formulation the partial differential equations (PDEs) of curve evolution are given and the two curves will stop on the desired boundary.
有关算符的统计平均值随时间的演化满足一个封闭的一阶线性微分方程组。
The statistical average values of some relevant operators satisfy a set of differential equations of the first order.
给出了一种利用演化计算方法求解微分方程中的参数识别类型反问题的方法。
A general approach based on evolutionary algorithms to inverse parameter identification problems of PDEs is introduced.
根据曲线演化和水平集函数演化的思想,提出了一种基于偏微分方程的图像处理方法。
We propose a new image processing method based on PDE with the reference of curve and level-set function involution theories.
给出了一种利用演化计算方法求解微分方程中的参数识别类型反问题的方法。
We presented a general methodology based on evolutionary algorithms (EAs) for the parameter estimation of inverse problems.
其次详细介绍了曲线演化理论、偏微分方程模型的水平集方法求解以及数值计算方法。
And then, the theory of curve evolution, how to solve the PDEs model based on level set method and its calculation methods are expatiated.
其次详细介绍了曲线演化理论、偏微分方程模型的水平集方法求解以及数值计算方法。
And then, the theory of curve evolution, how to solve the PDEs model based on level set method and its calculation methods are expatiated.
应用推荐