本文着重介绍循环码校验的原理,以及循环码校验所能检错的范围和实现循环码校验的方法。
This paper mainly presents the principle of cyclic code check and indicates the range it reached as well as its implementation.
证明了BCH码的校验矩阵是用循环变换的特征向量作基底时的一种表示形式,从而把循环码的研究纳入到线性系统理论研究的框架之中。
It is proved that the parity check matrix for BCH code is a representation form in the eigenvector basis. Thus the study on cyclic codes may be brought into the framework of linear system theory.
在校验矩阵构造方面,PEG的构造方法在度约束条件下能最大化环长,从而降低误码平层。同时准循环码在结构化方面也有很多优点。
When constructing a parity-check matrix, PEG can maximize the girth length, thus lowering error-floor, while quasi-cyclic structure bears other advantages.
在校验矩阵构造方面,PEG的构造方法在度约束条件下能最大化环长,从而降低误码平层。同时准循环码在结构化方面也有很多优点。
When constructing a parity-check matrix, PEG can maximize the girth length, thus lowering error-floor, while quasi-cyclic structure bears other advantages.
应用推荐