对数据通信中的差错控制编码技术——循环冗余码和海明码进行了详细的讨论和研究,并加以实际应用。
A coding technology of error control on data traffic——cyclic redundancy code and Hamming code——isdiscussed and investigated.
在计算机网络通信中,为了降低数据通信线路传输的误码率,可以采用一种差错检测控制———循环冗余码校验(CRC)。
In this paper, it studies one of the error-check controls of the communications of computers network-Cyclic Redundancy check (CRC).
为了提高单片机之间的通信速度,设计了一种循环冗余码校验CRC (Cyclic RedundancyCheck)算法。
In order to improve the communication of single-chip microcomputers, we designed an algorithm of CRC (Cyclic Redundancy Check).
在一些实施例中,存储器装置包括用于提供读数据位的存储器阵列和用于生成与读数据位对应的CRC位的循环冗余码(CRC)生成器。
In some embodiments, a memory device includes a memory array to provide read data bits and a cyclic redundancy code (CRC) generator to generate CRC bits corresponding to the read data bits.
一种用于检查一组字符的错误、并且具有最小冗余度的循环码。
A cyclic code with minimum redundancy used to check errors in a set of characters.
本文提出了基于字节查表生成循环冗余校验码(CRC码)的三种软件算法,并对其效率进行了分析。
This paper puts forward three table-based software algorithms to create cyclic redundancy check(CRC) code, and analyses efficiency of the algorithms.
以国际标准CRC-CCITT循环冗余校验码为研究对象,利用近世代数多项式理论证明其奇偶校验性质、最小码距和纠正单比特错误能力。
The polarities check ability, minimum code distance and capacity of correct single bit error of CRC-CCITT are proved by using galois field polynomial theory.
以国际标准CRC-CCITT循环冗余校验码为研究对象,利用近世代数多项式理论证明其奇偶校验性质、最小码距和纠正单比特错误能力。
The polarities check ability, minimum code distance and capacity of correct single bit error of CRC-CCITT are proved by using galois field polynomial theory.
应用推荐