首先通过变换关系和求解简单的常微分方程,得到了(3 +1)维破裂孤子方程丰富的孤立波解和周期波解。
Many of the exact solutions of (3 + 1) dimensional breaking soliton equation are obtained by using a simple transformation relation and solving the ordinary differential equation.
本文得到考虑了色散项后的一维分子晶体模型的孤子激发的运动解。
A moving solution for soliton excitation of a one-dimensional molecular-crystal model with the dispersion term is found.
使用齐次平衡方法,得到了(2+1)维破裂孤子方程的一些新多孤子解。
Using the extension homogeneous balance method, we have obtain some new special types of soliton solutions of the (2 + 1) - dimensional breaking soliton equation.
用逆散射方法,得到了含时外磁场驱动下一维自旋链的N孤子解。
Exact N-soliton trains in a spin chain driven by a time-dependent magnetic field are obtained by means of an inverse scattering transformation.
得到了非线性系数以及特征长度和预倾角的关系,并且给出了强非局域性的非线性薛定谔方程,最终得到了单孤子和临界功率的解析解。
Then the Schrdinger-type nonlinear equation in strong nonlocality was given and from the equation the analytical expressions of the single soliton and the critical power .
得到了非线性系数以及特征长度和预倾角的关系,并且给出了强非局域性的非线性薛定谔方程,最终得到了单孤子和临界功率的解析解。
Then the Schrdinger-type nonlinear equation in strong nonlocality was given and from the equation the analytical expressions of the single soliton and the critical power .
应用推荐