摘要文章给出了超凸度量空间中的一些变分不等式定理和极大极小不等式定理。
In the present paper some theorems for variational inequalities and minimax inequality are obtained in hyperconvex metric spaces.
在WF -模糊度量空间中建立压缩型和局部压缩型映射的不动点理论,推广一些重要的不动点定理。
The fixed point theorems for mappings of contractive type and locally contractive type on WF-fuzzy metric Spaces, which extend several important fixed point theorems, are established.
本文的目的是在概率度量空间建立三个公共不动点定理。
The aim of the present paper is to establish three common fixed point theorems in probabilistic metric Spaces.
本文提出了Z - M - PN空间的概念,在概率度量空间中我们得到了若干新的不动点定理。
In this paper, we introduce the concept of the Z-M-PN space, and obtain some new fixed point theorems in probabilistic metric Spaces.
同时给出了严格凸度量空间上拟非扩张映象、连续映象迭代序列的收敛性定理。
Some convergence theorems of iterative sequence for quasi-nonexpansive mappings and continuous mappings are also obtained in the strictly convex metric Spaces.
本文给出在完备度量凸空间上非自映射的一类新的不动点定理。
In this paper, we will give a new type of fixed point theorem for non - self - mapping in a complete metrically convex metric space.
通过分析贝叶斯定理的变形公式和属性相关性度量,提出一种基于强属性限定的贝叶斯分类模型SANBC。
On the basis of analyzing a variant of Bayes theorem and the evaluation of condition attribute with correlation, SANBC is proposed.
另外,在直觉模糊半度量空间中,讨论了一个非线性压缩条件下的公共不动点定理。
What is more, we offer a common fixed point theorem under the linear contractive condition in the setting of an intuitionistic fuzzy metric space.
利用第二、第三章的结果证明了模糊度量空间上相应的复合映射的不动点定理和几个单一映射的不动点定理。
We utilize the results in Chapter 2 and Chapter 3 to prove the fixed point theorems and several corollaries for complex mappings or single mapping on fuzzy metric Spaces.
利用第二、第三章的结果证明了模糊度量空间上相应的复合映射的不动点定理和几个单一映射的不动点定理。
We utilize the results in Chapter 2 and Chapter 3 to prove the fixed point theorems and several corollaries for complex mappings or single mapping on fuzzy metric Spaces.
应用推荐