由于蠕变和应力松弛的影响,粘结层应变不可逆地增加,使TGO层的界面形貌出现起伏。
Impacted by creep and stress relaxation, the strain of bond coat layer increases irreversibly, and the TGO layer convolutes .
最大应力和最小应力或二者之一和平均应力,以确定其起伏程度。
Either the maximum and minimum stresses of one of these and the mean stress-are required to specify the fluctuation.
本文将代数应力模型推广应用于具有起伏表面的紊流数值计算。
The algebraic stress model has been used in this paper to calculate the turbulent flow with wavelike free surface.
在较高的法向应力下,含起伏角较高齿形节理面的非贯通节理岩体可能出现破坏模式II(先张拉后剪切破坏模式)。
However, at higher angle of tooth-shaped asperities and under higher normal stress, the failure model II is found, which is in first tension but final shear failure.
从以速度-应力表示的一阶波动方程出发,导出了起伏边界情况下的边界条件。
Starting from one-order wave equation, we derived boundary conditions under ragged surface.
从以速度-应力表示的一阶波动方程出发,导出了起伏边界情况下的边界条件。
Starting from one-order wave equation, we derived boundary conditions under ragged surface.
应用推荐