研究拟常曲率黎曼流形中具有平行平均曲率向量的紧致子流形。
The compact submanifolds in quasi constant curvature Riemannian manifolds with Parallel Mean Curature Vector were studied.
研究了拟常曲率流形中具有平行平均曲率向量的子流形,给出了两个积分不等式。
We study the submanifolds with parallel mean curvature vector in a manifold of quasi constant curvature, and give two integrate inequalities.
讨论局部对称空间中具有平行平均曲率向量的子流形,得到其关于第二基本形式模长平方的积分不等式的相关定理。
This paper discusses submanifolds with parallel mean curvature vector in local symmetric Spaces and obtains integral invariants about the square of modulus-length.
使得对拟常曲率黎曼流形中紧致子流形的研究由极小子流形和伪脐子流形情形扩展到具有平行平均曲率向量的情形。
The work makes the study of compact submanifolds in quasi constant curvature Riemannian manifolds extend from the especial case to general case.
本文讨论了Sasakian空间形式中具有平行平均曲率向量的C-全实子流形,得到了一个Simons型公式并且改进了S.Yamaguchi等的一个结果。
We have discussed the C-totally real submanifolds with parallel mean curvature vector of Sasakian space form, obtained a formula of J.
本文将着重研究更为一般的具有平行单位平均曲率向量子流形的有关几何问题。
In the present paper, we mainly study the codimension reduction problems for submanifolds with parallel unit mean curvature vector in a sphere.
本文将着重研究更为一般的具有平行单位平均曲率向量子流形的有关几何问题。
In the present paper, we mainly study the codimension reduction problems for submanifolds with parallel unit mean curvature vector in a sphere.
应用推荐