主平方根函数是使用非正实轴作为分支切割定义的。
The principal square root function is defined using the nonpositive real axis as a branch cut.
这个让你知道怎样寻找平方根。
或者,它可以表现的像个开平方根的机器。
另外,计算平方根。
所以他们频繁地使用这种包含-1的平方根的标记方法,仅仅是为了引入完全的对称。
So they frequently used this notation containing the root of minus 1, just to bring in the complete symmetry.
首先,获取数的范围是从1到目标数的平方根加 1(确保能取到所有因子)。
First, I take the range of numbers from 1 to the target number's square root plus 1 (to make sure I catch all the factors).
衡量人们的总体能力,然后衡量他们的聪明度,算出两个数字的平方,再把它们相加,最后求出平方根。
Measure a person's general ability; then measure their cleverness, then square both numbers and add them together, then take the square root.
取它的平方根。
例如,对于数字16,平方根是4,该数字将被意外地添加到列表中两次。
For example, for the number 16, the square root is 4, which inadvertently gets added to the list twice.
你应该用乘积的平方根。
如果有人请求负数的平方根,也将发送错误响应。
You also send a fault response if someone requests the square root of a negative number.
结果是当您成对地获得数字时,您在到达整数平方根时将意外地获得两次数字。
It turns out that when you harvest the Numbers in pairs, you accidentally grab Numbers twice when you reach a whole-number square root.
我大概能理解它,即使平方根很难看到。
I can sort of understand that although the square root is hard to see.
例如,如果目标数是16,平方根的整部部分4会在因子列表中出现两次。
For example, if the target number is 16, the whole-number root of 4 would end up on the list of factors twice.
标准差是方差的平方根。
我们马上来测量时间,再取其比值,接着对比,看时间是否与高度的平方根,成正比。
So now we can measure these times and then we can take the ratio and then we can see that the time that it takes is proportional to the square root of the height.
请考虑清单1所示的平方根函数的原型。
Consider the prototype for a simple square root function shown in Listing 1.
现在不证明-,你们将在803章学到-,我告诉你们声速,是杨氏模量的平方根,除以介质的密度。
Without proof-- - you will see this if you ever take 803-- I will tell you that the speed of sound is the square root of Young's modulus divided by the density of the material.
它不会帮你算出平方根。
100的平方根永远等于10。
过滤目标数的所有因子,从1到其平方根。
Filter all of the target number's factors from 1 to the square root of the number.
一个数的平方根会小于0么?
你也许认为这个误差,=372加减1的,平方根1,除以186加减。
You may think that the uncertainty in there equals the square root 1 of 372 plus or minus 1 1 divided by 186 plus or minus 1.
我接下来要求b的平方和h的平方,的和的平方根对不对?
I want to then do, I need to find the square root b squared plus h squared, right?
如果想要逃离这里,你将需要一个速度,是轨道速度2倍大的,平方根。
If you want to escape from this, you will need a speed which is the square root of two times larger than that orbital velocity.
但是系统能量的变化量大约,会是N的平方根乘以ε
But the system variance is going to be on the order of the square root of N times epsilon.
但是系统能量的变化量大约,会是N的平方根乘以ε
But the system variance is going to be on the order of the square root of N times epsilon.
应用推荐