现在,Raizen的研究证明了能量均分定理在布朗粒子中的正确性。这时3微米大小的玻璃微粒可以穿过。
Raizen's study now proves that the equipartition theorem is true for Brownian particles; in this case, glass beads that were three micrometers across.
在1985年从布朗运动的角度证明了定理1.1,本文利用构造凸包络的方法,给出了该定理偏微分上的证明。
In 1985, prove Theorem 1.1 from the point of Brown Motion. This paper USES the method of establishing the convex envelope, giving a proof in Partial Differential Equation.
研究了一列分式布朗运动的起伏极限,证明了广义收敛意义下的大数定律和中心极限定理。
In this paper, we investigate the fluctuation limit of a series of fractional Brownian motions, and prove the large number law and the central limit theorem in generalized convergence.
主题包括测度论,极限定理,包围概率和期望,耦合和斯坦的方法,鞅,马尔可夫链,更新理论,和布朗运动。
Topics include measure theory, limit theorems, bounding probabilities and expectations, coupling and Stein's method, martingales, Markov chains, renewal theory, and Brownian motion.
主题包括测度论,极限定理,包围概率和期望,耦合和斯坦的方法,鞅,马尔可夫链,更新理论,和布朗运动。
Topics include measure theory, limit theorems, bounding probabilities and expectations, coupling and Stein's method, martingales, Markov chains, renewal theory, and Brownian motion.
应用推荐