针对该问题,提出基于核局部线性嵌入算法的图像去噪方法。
Aiming at this problem, this paper USES Kernel Locally Linear Embedding (KLLE) algorithm to solve image denoising problem in this paper.
提出了一种基于局部线性嵌入(LLE)的水印算法,它对仿射变换具有鲁棒性。
In this paper, a watermarking algorithm based on Locally Linear Embedding (LLE) was proposed.
局部线性嵌入(LLE)算法是有效的非线性降维方法,时间复杂度低并具有强的流形表达能力。
The Locaally linear Embedding (LLE) algorithm is an effective technique for nonlinear dimensionality reduction of high-dimensional data.
局部线性嵌入方法是一种应用广泛的流形学习方法,本文提出算法的一种改进,并将其应用于空间数据索引。
Locally linear embedding (LLE) is a widely-used manifold learning algorithm, in this paper we improve on the algorithm and put it to use in spatial data index.
其主要思想是通过引入线性变换矩阵来近似经典的局部线性嵌入(LLE),然后通过核方法的技巧在高维空间里求解。
The main idea is to approximate the classical local linear embedding (LLE) by introducing a linear transformation matrix and then find the solution in a very high dimensional space by kernel trick.
针对这个缺点,提出了一种改进的、基于自适应最近邻法的局部线性嵌入方法,数值实验证明算法对于有监督的学习问题,具有较好的适应性。
An adaptive nearest neighbor locally linear embedding algorithm is proposed to overcome this shortage. Experiment results show that the algorithm ADAPTS well the supervised learning problems.
针对这个缺点,提出了一种改进的、基于自适应最近邻法的局部线性嵌入方法,数值实验证明算法对于有监督的学习问题,具有较好的适应性。
An adaptive nearest neighbor locally linear embedding algorithm is proposed to overcome this shortage. Experiment results show that the algorithm ADAPTS well the supervised learning problems.
应用推荐