在极化率正演计算和电阻率反演成像中,偏导数矩阵的计算是比较关键的问题。
The calculation of the partial derivatives is important in modeling IP and inversion resistivity.
采用矩阵迭代法可以直接迭代计算特征向量导数,避免了对奇异灵敏度方程的求解。
Using matrix iteration methods, the eigenvector derivatives can be iterated directly, solving the singular sensitivity equation can be avoided.
该方法仅需进行一次系统矩阵的分解就可获得高精度的多个复振型导数。
Finally, many complex mode shape derivatives of high accuracy can be obtained by decomposing system matrices only once.
考察了除环上的l多项式的左因式、左根与左倍式的性质,给出了导数与左结矩阵的应用。
Left factors, left multiples and left roots of the polynomials over sfield are studed. Applications of derivative and left relative matrices are given.
当网络连接权值矩阵的最小特征值大于激活函数导数的倒数时,网络并行收敛。
When the minimal eigenvalue of connection weights matrix is greater than the reciprocal of derivation of its neuron activation function, the network will be convergent in parallel update mode.
本文在经典力学的基础上,提出求解动点作平面复合运动的直接矢量导数方法和矩阵方法的定型公式。
On the basis of classical mechanics, the author derived a series of typical vector and matrix formulas for solving the problems of a particle that takes part in plane complex movements.
在捷联惯导数字迭代算法中,姿态算法有效处理了导航坐标系旋转的影响,利用位置矩阵求解位置的方法很容易地解决了涡卷误差的补偿问题。
The rotation effect of navigation coordinate is well compensated in SINS attitude algorithms. Scrolling error compensation can directly be used in the position matrix update algorithms.
海森矩阵被应用于牛顿法解决的大规模优化问题。混合偏导数和海森矩阵的对称性海森矩阵的混合偏导数是海森矩阵非主对角线上的元素。
Hessian matrices are used in large-scale optimization problems within Newton-type methods because they are the coefficient of the quadratic term of a local Taylor expansion of a function.
海森矩阵被应用于牛顿法解决的大规模优化问题。混合偏导数和海森矩阵的对称性海森矩阵的混合偏导数是海森矩阵非主对角线上的元素。
Hessian matrices are used in large-scale optimization problems within Newton-type methods because they are the coefficient of the quadratic term of a local Taylor expansion of a function.
应用推荐