最近有人提出一种新的代数对角化方法。
But recently some people presented a new algebraic diagonalization method.
在通常情况下,有特征根的实对称矩阵对角化方法。
This article Presents a method for diagonalization of the real symmetrical matrix with multiple eigenvalues.
针对高斯白噪声中的二维角度估计问题,提出一种非酉联合对角化方法。
A non-unitary joint diagonalization method was proposed to estimate the two-dimension(2D) direction of arrival(DOA) embedded in additive Gaussian noise.
利用代数对角化方法,可得到压缩态形式的能量本征态和相应的能量本征值。
The energy eigenvalues and the squeezed state solutions are obtained by making use of algebraic diagonalization.
本文在位移元本征应力模式基础上引进调节参数,同时,利用矩阵H对角化方法计算杂交元应力子空间的本征应力模式,然后由此方便有效地计算特征值,从而大大提高了计算效率。
The parameters are introduced based on the natural stress modes of the displacement element, and the method of matrix H diagonalization was introduced to improve the calculation of the natural.
二次型化标准形常采用配方法,而二次型化标准形等价于它的矩阵合同对角化,文中利用初等矩阵和初等变换之间的关系。
Method of completing square is often used when transforming a quadratic form into a normal one, whose process is equivalent to making the relevant matrix contract diagonal.
给出了利用H阵对角化建立部分杂交元的方法。
The paper presents a method for constructing partial hybrid finite element by diagonalization of matrix h.
为了降低需要对角化的最终哈密顿矩阵的维数,采用连续对角化截断方法。
Successive diagonalization and truncation technique was used to reduce the size of the final Hamiltonian matrix to be diagonalized.
论文中应用了解析严格求解和数值对角化等方法对相关问题进行了研究和讨论。
In this paper, the methods such as analytical exact solution, numerical diagonal method are applied to study the related problems.
证明并给出一种构造可对角化矩阵的相似逆变换矩阵的新方法。
This paper proves and provides a new method for constructing the similarity inverse transformation matrices of diagonalization matrix.
文章针对特征矩阵施行初等变换,提出了求出矩阵特征值和特征向量的一种方法,从而以简捷的方式将矩阵相似对角化。
The model of the defect of 1-D photonic crystal, which is defect in symmetry, is set up based on the solution of eigen matrix.
文章针对特征矩阵施行初等变换,提出了求出矩阵特征值和特征向量的一种方法,从而以简捷的方式将矩阵相似对角化。
The model of the defect of 1-D photonic crystal, which is defect in symmetry, is set up based on the solution of eigen matrix.
应用推荐