讨论了在适当条件下,密度函数核估计的一致强相合性。
Under certain conditions, We discuss the uniform strong consistency of kernal estimator for the density function.
通过相隔固定的帧差值阅值化得到背景样本值,并采用高斯核密度估计方法计算背景灰度的概率密度函数。
The background samples are chosen by thresholding inter-frame differences, and the Gaussian kernel density estimation is used to estimate the probability density function of background intensity.
本文提出了利用一维核函数构造多维密度函数一个新估计的方法。
In this paper, a new kernel estimator of multivariate density is proposed by using a univariate kernel function.
推广后的定位方法,可根据具体的目标定位场合,灵活选择核函数对样本点进行核密度估计。
Using this method, kernel function could be flexibly chosen to estimate sample point's density values according to different locating application scenes.
本文基于非参数核密度估计与核回归估计的基础上,介绍了合理选取核函数及窗宽的原则和方法。
This paper introduced the selection principle and method about a reasonable kernel function and bandwidth based on the nonparametric kernel density estimation and kernel regression estimation.
多元统计过程介绍了三种主要的方法:主元分析法、偏最小二乘法和核函数概率密度估计法。
About multivariate statistical process, three methods are introduced: Principal Component Analysis, Partial Least Squares, Kernel Density Estimation.
多元统计过程介绍了三种主要的方法:主元分析法、偏最小二乘法和核函数概率密度估计法。
About multivariate statistical process, three methods are introduced: Principal Component Analysis, Partial Least Squares, Kernel Density Estimation.
应用推荐