在通常情况下,有特征根的实对称矩阵对角化方法。
This article Presents a method for diagonalization of the real symmetrical matrix with multiple eigenvalues.
本文讨论了一类由五个特征值和相应特征向量构造实对称五对角矩阵的特征值反问题。
In this paper, a kind of inverse eigenvalue problem which is the reconstruction of real symmetric five-diagonal matrix by five eigenvalues and corresponding eigenvectors is proposed.
研究实对称矩阵、对角矩阵以及欧氏空间的规范正交基。
The real symmetric matrix, the diagonal matrix and the orthogonal basis of n-dimensional Euclidean space are studied.
针对次对角矩阵与实反次对称矩阵进行了讨论,给出了次对角矩阵的特征值、实反次对称矩阵的次特征值及次特征向量等的性质。
The paper discusses sub-diagonal and real anti-sub-symmetric matrix, and gives several properties of these two kinds of special matrix.
针对次对角矩阵与实反次对称矩阵进行了讨论,给出了次对角矩阵的特征值、实反次对称矩阵的次特征值及次特征向量等的性质。
The paper discusses sub-diagonal and real anti-sub-symmetric matrix, and gives several properties of these two kinds of special matrix.
应用推荐