孤子理论在自然科学的各个领域里扮演着非常重要的角色。
Soliton theory plays a very important role in various fields of natural science.
在第五章中,介绍我们所做的相关孤子理论问题的研究工作。
In the fifth chapter, we introduce some other works about soliton problems we have done.
本文研究一维量子晶格气中粒子最近邻相互作用的非线性性质,给出这一模型的孤子理论。
In this paper, the non-linear properties of the nearest neighbor interaction between particles in one-dimensional quantum lattice gas are investigated, giving out the soliton theory of the model.
在第一章中,我们简单介绍孤子理论、亮孤子和暗孤子微扰问题的研究进展、现状和主要方法。
In the first chapter, we briefly introduce the research progress, present situation and main methods of soliton theories and perturbation problems of bright and dark solitons.
长水波方程作为一种孤子方程具有很强的理论和现实意义。
As one of the soliton equations, long wave equation takes on profound significance of theory and reality.
所以,孤子微扰理论在光纤通讯中的应用具有非常重要的科研应用价值。
Thereby, the application of the theory of soliton perturbations in optical fibre communication has significant scientific research value.
本文在耦合模理论的基础上,运用有限差分法数值模拟了布拉格亮孤子在抛物线平方变迹光纤光栅中的传输特性。
On the basis of the coupled mode theory, the finite-difference method is used to simulate the transmission of Bragg bright solitons in parabolic squared-apodization fiber gratings.
通过微扰理论分析了超短孤子在色散缓变光纤(DDF)中传输的时间抖动。
Timing jitter of ultrashort solitons propagating in dispersion-decreasing fiber (DDF) is analyzed through perturbation theory.
非零边值的DNLS孤子微扰理论尚未建立。
The perturbation theory of the DNLS soliton with NVBCs has not been developed.
为光纤布拉格光栅中产生隙孤子的实验和进一步的工程应用提供了理论基础。
The study lays the theoretical fundation for solitons production experiments and further engineering application in fiber Bragg grating.
因而,孤子微扰理论在研究实际物理系统时具有很大的实用价值。
Thus, the soliton perturbation theory is of importance for the research into more real nonlinear systems.
从而理论上说明了在光纤布拉格光栅中隙孤子存在需要选择适当参量。
It is theoretically showed that proper parameters choice is needed for gap solitons production in fiber Bragg grating.
接着较全面地描述我们提出的新理论的物理学基础、模型的特征和所形成的两类缺陷和质子孤子的特性。
However, we described completely the physical foundation and properties of new model proposed by us and features of two kind of different defects and corresponding proton? Solitons.
第二部分同样用微扰理论来研究滤波器的作用,导出了频域滤波孤子传输系统的脉冲演化方程;
Secondly, we have studied the effect of filters by the use of perturbation theory and derived the evolution equation of the soliton pulse in the presence of sliding frequency.
基于相干密度理论,数值地研究了在饱和对数非线性介质中多个部分非相干光空间孤子之间的相互作用。
We investigate numerically the interactions of multiple partially incoherent spatial solitons in a nonlinear medium with logarithmic saturable nonlinearity based on the coherent density approach.
本文采用理论分析和数字模拟相结合的方法研究非线性光子晶体波导中光孤子的产生、特性及其应用。
We investigate the generation, properties and applications of optical solitons in nonlinear photonic crystal (PC) waveguides by theoretical analysis and numerical simulation.
一是建立在逆散射变换基础上的孤子微扰理论。
One is based on the inverse scattering transformation(IST) which has important learning value.
用解析方法和数值方法在理论上研究了光折变晶体中的稳态矢量空间光孤子及有偏压光伏光折变晶体中光束的调制不稳定性;
The steady state vector spatial solitons in photorefractive crystals and the modulation instability in biased photorefractive-photovoltaic crystals are studied by both analytic and numerical methods.
第二章,分别探讨了玻色-爱因斯坦凝聚中暗孤子和亮孤子实验情况和理论研究现状。
In chapter two, we introduce the mod-ern studies and experiments of dark solitons and bright solitons in Bose-Einstein condensates, respectively.
利用孤子波的数学理论到圆截面直筒油管的应力波传播的研究,得出了这类应力波具有孤子波的性质,并导出了它的解的表示式。这对研究弹性圆管应力传输问题是有帮助的。
Using the mathematical theory of soliton wave to study the stress wave of an oil pipe, we show that it has the property of soliton wave and obtain an expression of its solution.
评述了有关生物分子中孤子的理论和实验。
The theory and the experiments about solitons in biomolecules, especially in DNA and a-helical proteins, are reviewed.
使用超高斯滑频滤波器控制光学光纤中孤子相互作用的理论结果。
We derived the theoretical results of soliton interactions in optical fiber with super-Gaussian sliding-frequency filters.
基于空间暗光孤子诱导波导的模式特性以及光波在波导间耦合理论,提出了一种实现光控可变定向耦合器的方法。
A photovoltaic spatial soliton theory of duotone signal beam with monochrone background beam is presented, and a solution of bright soliton has been obtained by a numberical method.
基于相干密度理论,数值地研究了在饱和对数非线性介质中多个部分非相干光空间孤子之间的相互作用。
We investigate numerically the interaction between incoherent spatial solitons in a nonlinear medium with logarithmic saturable nonlinearity base on the coherent density approach.
基于相干密度理论,数值地研究了在饱和对数非线性介质中多个部分非相干光空间孤子之间的相互作用。
We investigate numerically the interaction between incoherent spatial solitons in a nonlinear medium with logarithmic saturable nonlinearity base on the coherent density approach.
应用推荐