两个表述的等效性可以通过使用连续多项式除法来证明。
The equivalence of the two statements can be proven through the use of successive polynomial division.
摘要求两个多项式的最大公因式,可以用辗转相除法及分解因式法。
Generally speaking division algorithm and factor resolution can be used to find the greatest common factor of the two multinomial.
该算法利用多项式带余除法的相关推论,通过矩阵的列变换来求解关键方程,这样可以快速地得到商式和余式,从而可以减少迭代运算的次数。
The proposed algorithm use the related deduction of division with reminder of polynomials and the key equation is solved by column transformation of matrix.
在高等代数教课书中,关于多项式的除法运算中余项的确定是以余式定理为依据且利用带余除法进行的,这是大家所熟悉的。
In the textbook of higher algebra, it is familiar to us that the remainder in the division operation of polynomial is on the basis of residue theorem and operated through division algorithm.
基于矩阵多元多项式的带余除法,给出了代数情形多项式组特征列的一种新求法,并举例验证了这种方法的有效性。
Based on the pseudo-division algorithm for multivariate matrix polynomials, a new solving process of characteristic series for algebraic polynomial systems is given.
基于矩阵多元多项式的带余除法,给出了代数情形多项式组特征列的一种新求法,并举例验证了这种方法的有效性。
Based on the pseudo-division algorithm for multivariate matrix polynomials, a new solving process of characteristic series for algebraic polynomial systems is given.
应用推荐