本文给出用矩阵的行初等变换求两个多项式最大公因式的方法。
In this paper the author gives a new method to solve the greatest common formula of two multinomials elementary transformation of raws of the matrix.
摘要求两个多项式的最大公因式,可以用辗转相除法及分解因式法。
Generally speaking division algorithm and factor resolution can be used to find the greatest common factor of the two multinomial.
利用矩阵的初等变换,给出了两个多项式的最小公倍式、最大公因式及其系数多项式的统一求法。
Thus we gave a kind of new method for solving the greatest common factor of two-variable polynomials.
利用矩阵的初等变换,给出了两个多项式的最小公倍式、最大公因式及其系数多项式的统一求法。
In this paper we get a seeking unified method of the least common multiple the greatest common factor and coefficients polynomial by implementing elementary row transformation in a polynomial matrix.
给出一种求解一元多项式的最大公因式新方法。
A new method to solve the greatest common factor of one variable polynomials is proposed.
本文给出一种求任意有限个不全为零的多项式的最大公因式的方法。
This paper gives to seek a kind of method of highest common factor of polynomialS that wilfully finite ones are not complete zeroes.
该方法仅利用结矩阵便可求得多项式的最大公因式。
Only the resultant matrix is needed to solve the greatest common factor of polynomials...
给出求多项式组的最大公因式的一种简单方法——矩阵变换的方法,并给出算法。
Division algorithm is a common method to evaluate the greatest common formula of multinomial.
给出求多项式组的最大公因式的一种简单方法——矩阵变换的方法,并给出算法。
Division algorithm is a common method to evaluate the greatest common formula of multinomial.
应用推荐