对某些特殊类型的分配问题,给出了多项式复杂性的分配算法。
Polynomial time algorithms are given for some special types of connected assignment.
有了曼德尔勃特集合,蔬菜和二次多项式都变得有趣多了。这个方程序表现了类似图中的花椰菜菜籽的重复的复杂性。
Both vegetables and quadratic polynomials are made more interesting with the Mandelbrot set. The formula explains the repeating complexity of broccoli heads like this one.
在计算实践中,处理大型多项式时,由于复杂性原因,实闭域一阶理论判定方法实际上无效。
The conventional methods do not work in practice when dealing with large polynomials because of their high complexity.
着重证明了K -树组法为多项式时间复杂性算法。
It is proved that K-Tree Term method is a multinomial time complexity algorithm.
并且对这两类问题都研究了他们的计算复杂性并给出了最优算法或者多项式时间近似算法。
For both problems, we study their computational complexity and present optimal algorithms or polynomial time approximation algorithms.
同时,拟合方法采用目前非常成熟的多项式最小二乘拟合。从而不仅能控制拟合函数的复杂性,而且使分段拟合的补偿区间数量达到最少,极大地降低了计算成本。
The paper adopts the method of multinomial least squares as fitting to make the fitting function be simple and the amount of compensation interval be least, reduces the calculation cost.
因此,没有一个多项式(计算的复杂性)算法可以保证最优运动向量。
Therefore, there is no algorithm with polynomial computational complexity that guarantees optimal motion vectors.
后者的计算时间复杂性远远低于2N(N为图的顶点数) ,已接近于多项式时间复杂性。
The computational complexity of the improved algorithm approaches polynomial complexity, much less than 2 N ( N is the vertex number of a graph).
后者的计算时间复杂性远远低于2N(N为图的顶点数) ,已接近于多项式时间复杂性。
The computational complexity of the improved algorithm approaches polynomial complexity, much less than 2 N ( N is the vertex number of a graph).
应用推荐