所得数据采用t检验、秩和检验及多元方差分析等方法进行统计分析。
The statistical methods, such as t test, rank test and MANOVA were used to analyse the data.
方法对我国3个区域、11个城市、2个类型的服务部门,综合考虑4项服务量指标,进行多元方差分析。
Methods By multivariate analysis of variance on 4 service quantity indexes of the service institutions in 11 cities of 3 areas, of 2 types were comprehensively analyzed.
首先,对102名锻炼者进行横向比较,多元方差分析结果表明,锻炼年限和锻炼项目对心理效益有显著主效应。
First, by comparing the results of 102 exercisers, multivariate analysis of variance results showed that exercise history and the project of exercise have a significant main effect on the psychology.
结果表明,种群间16个形态指标中的15个具有显著性差异,而多元方差分析的种群间形态变异的差异性较小。
There are significant difference among 15 of 16 morphological traits, and small difference was shown among populations using the multivariate analysis.
数据分析采用方差分析、多元回归分析。
Data were analyzed using variance and multiple regression analysis.
最后,利用方差分析和多元线性回归方法建立了预报日nee的线性模型。
Finally, a linear model is established to forecast diurnal NEE through variance analysis and multiple linear regression methods.
方法应用直线相关回归、逐步多元回归和协方差分析等统计学方法分析暂时性听阈位移与听阈、噪声强度、工龄、年龄等因素之间的关系。
Method Statistical methods of linear regression, multiple stepwised regression, two-way ANOVA were used to analysis the relation of TTS with audition, noise level, working-year and age.
最后,通过采用因子分析、方差分析、多元回归分析等统计方法对所提出的概念模型和研究假设进行了验证和分析。
Finally, by using factor analysis, variance analysis and multiple regression analysis, this paper verifies the above conceptual model and research hypothesis.
本研究采用的统计分析方法主要有:方差分析、秩和检验、最优尺度回归分析、多元线性回归分析。
The main analysis methods are: analysis of variance, ranks test, optimal scaling regression and multiple regression.
在实证部分,提出假设,进行描述行统计分析、参数检验分析、单因素方差分析、相关性分析和多元线性回归分析。
The empirical study part contains assumptions, description of statistical analysis, parameter testing of single-factor analysis of variance, correlation and multiple linear regression analysis.
对所收集的数据,进行统计描述、t检验、多因素方差分析、相关分析和逐步多元回归分析。
The data collected were described and analyzed with statistical description, t-test, analysis of variance, linear correlation and multiple linear regression.
研究中采用了t检验、相关性分析、方差分析、多元线性回归等统计分析方法。
The statistical methods used were t-test, correlation analysis, variance analysis and multiple linear regression.
研究中采用了t检验、相关性分析、方差分析、多元线性回归等统计分析方法。
The statistical methods used were t-test, correlation analysis, variance analysis and multiple linear regression.
应用推荐