• -均值聚类算法粗糙划分确定兴趣

    First we make a loose classification with k-means clustering algorithm to fix a category of interest.

    youdao

  • 该文提出基于K近邻加权混合C均值聚类算法

    A new weighted hybrid C-means clustering based on the K-nearest-neighbour rule is presented in this paper.

    youdao

  • 针对这个问题很多稳健模糊C -均值聚类算法提出

    Lots of robust fuzzy C-means algorithms have been proposed in the literature to solve this problem.

    youdao

  • 利用选取的变量模糊c均值聚类算法可以较好进行管理分区划分。

    The results revealed that fuzzy c-means clustering algorithm could be used to delineate management zones by using the given variables.

    youdao

  • 根据交通特性运用模糊C均值聚类算法交通流各要素进行模糊分析处理

    According to the characteristics of traffic flow, it USES fuzzy C-means clustering algorithm to deal with these fuzzy factors.

    youdao

  • 对于区域分割,使用基于加权平方欧式距离的均值类算法代替传统均值聚类算法

    It applies weighted K-means clustering for region segmentation, instead of traditional K-means clustering.

    youdao

  • 传统模糊c -均值算法基础提出一种新型区间数据模糊聚类算法

    Based on the traditional fuzzy C-means clustering algorithm, a new fuzzy C-means clustering algorithm for interval data clustering is proposed.

    youdao

  • 采用模糊C—均值聚类算法对网络进行模糊化,利用改进LMS算法对网络进行训练。

    The FCNN is fuzzed by FCM algorithm and improved LMS algorithm is applied to tune the weight of FCNN.

    youdao

  • 结果模糊K- 均值聚类算法很好地分割出磁共振颅脑图像中的灰质、 白质脑脊液

    Results Fuzzy K means clustering algorithm can segment white matter, gray matter and CSF better from the MR head images.

    youdao

  • 针对模糊C均值聚类算法初始值敏感陷入局部的缺陷,提出一种新的优化方法

    Considering fuzzy C-means clustering algorithms are sensitive to initialization and easy fall - en to local minimum, a novel optimization method is proposed.

    youdao

  • 首先该文利用模糊C均值可能性C均值聚类优点设计混合C均值聚类算法

    Firstly, the advantages of fuzzy C-means clustering and possibilistic C-means clustering are utilized in this paper. We design a new hybrid C-means clustering accordingly.

    youdao

  • 首先该文利用模糊C均值可能性C均值聚类优点,设计出一种混合C均值聚类算法

    Firstly, the advantages of fuzzy C-means clustering and possibilistic C-means clustering are utilized in this paper.

    youdao

  • 由于原始模糊c -均值聚类算法没有考虑图像空间信息算法图像中的噪音点十分敏感

    Without considering the spatial information of images, the original fuzzy C-means algorithm is very sensitive to image noise.

    youdao

  • 算法基于图像特点利用K均值聚类算法图像分成几个灰度区间,然后再分别进行均衡化。

    According to the characters of the images, the algorithm separated image into several regions by K-means clustering algorithm, and each region is equalized respectively within their gray levels.

    youdao

  • 算法基于图像特点,利用K均值算法将图像分成几个灰度区间,然后分别进行均衡化。

    The complexity of time and spatial is becoming the difficulty of K-Means clustering algorithm while it deals with the huge amounts of data sets.

    youdao

  • 基于特征联合分布直方图理论模糊c -均值聚类算法我们提出了新的视频流模糊检索方法

    We bring out our video retrieval method based on multi-feature data association histogram and C-Mean fuzzy clustering algorithm.

    youdao

  • 经典C -均值算法CMA图像分割C的常用方法,但依赖于初始聚类中心的选择。

    The classical C-means clustering algorithm (CMA) is a well-known clustering method to partition an image into homogeneous regions.

    youdao

  • 然后K近邻规则为基础,计算样本加权矩阵最后得到基于K近邻加权的混合C均值聚类算法

    And then based on the K-nearest-neighbour rule, the weighted matrix of samples is computed. Lastly, weighted hybrid C-means clustering based on the K-nearest-neighbour rule is presented.

    youdao

  • 本文几何角度给出模糊c均值算法隶属解释这种解释更好的说明模糊c均值聚类算法本质

    An explanation of membership degree in FCM algorithm from geometry view is given, which is helpful to understand the essence of FCM algorithm.

    youdao

  • 针对K均值聚类算法依赖初始值的选择,且容易收敛于局部极值缺点,提出一种基于粒群优化的K均值算法

    Local optimality and initialization dependence disadvantages of K-means are analyzed and a PSO-based K-means algorithm is proposed.

    youdao

  • 本文经典模糊c -均值聚类算法模糊测度和模糊积分结合起来,两种算法应用于医学病理图象分割

    In this article we combine the fuzzy C-means algorithm with fuzzy measures and fuzzy integrals and apply the two algorithms to the medicinal pathological image segmentation.

    youdao

  • 均值聚类算法执行时间过度依赖初始选取但是实际问题并不知道k取值怎样才能有效地选取初始点。

    The running time of K-means overly depends on the initial points but the right value of k is unknown and selecting the initial points effectively is also difficult.

    youdao

  • 该文子镜头关键提取方法基础上,利用模糊c -均值算法,实现了一种基于子镜头聚类情节代表选取方法

    An algorithm for selecting episode representation frames by using an approach of key frame extraction based on multiple characters and C-Mean fuzzy clustering is detailed in the paper.

    youdao

  • 改进后模糊C-均值算法具有更好棒性,且放松了隶属度条件,使得最终结果预先确定聚类数目敏感

    The improved fuzzy C-means clustering algorithm has better robustness and makes the cluster results insensitive to the predefined cluster number.

    youdao

  • IRIS数据检验表明,未确知均值算法误判样本数少、收敛速度快、棒性一种实用、有效的监督聚类算法

    The data of IRIS indicates that the algorithm possesses the better convergence, better robustness and it is an unsupervised clustering algorithm.

    youdao

  • 该文根据FCM算法灰度图像特点提出了一种适用于灰度图像分割抑制式模糊C -均值类算法(S - FCM)。

    In the paper, a suppressed fuzzy c-means (S-FCM) algorithm, for intensity image segmentation, is proposed on the basis of the characters of FCM algorithm and intensity images.

    youdao

  • 本文改进了传统FCM目标函数引入控制邻域作用紧密程度参数提出一种能够更加合理地运用图像的空间信息,改进的模糊c -均值聚类算法

    Modifying the objective function of FCM and introducing a variable as the parameter to control the tight degree of neighborhood effect present a spatial model to FCM clustering algorithm.

    youdao

  • 本文改进了传统FCM目标函数引入控制邻域作用紧密程度参数提出一种能够更加合理地运用图像的空间信息,改进的模糊c -均值聚类算法

    Modifying the objective function of FCM and introducing a variable as the parameter to control the tight degree of neighborhood effect present a spatial model to FCM clustering algorithm.

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定