图着色问题是著名的NP-完全问题。
The graph coloring problem is a well-known NP-complete problem.
图着色问题是著名的NP-完全问题。
图着色问题(GCP)是NP完全问题。
基于图着色问题的特点,设计了一种新的、有效的杂交算子。
An effective crossover is designed according to the characteristic of the GCP.
到目前为止,对于一般的图,全着色猜想仍然是一个公开的问题。
So far, for any graph, the Total Coloring Conjecture is still an open problem.
图的邻强边着色算法是一个NP完全问题。
The algorithm for the adjacent strong edge coloring of graphs is an NP-complete problem.
图式流形的同胚分类可转化为图的一类2 -边着色计数问题。
The homeomorphism classification of graph like manifolds can be transformed into a 2 edge colouring enumeration problem for graphs.
本文讨论了若干图类的四种不同的着色问题:动态着色、关联着色、平面图的完备着色和边面着色。
In this paper, four types of graph coloring are discussed: dynamic coloring, incidence coloring, entire coloring and edge - face coloring of planar graphs.
其次,文章研究了平面图的列表着色问题,给出了平面图3 -可选的一个充分条件。
Secondly, we investigate the list coloring of planar graphs, and give a su? Cientcondition for a planar graph being 3-choosable.
本文给出了图顶点着色问题的DNA粘贴算法。
In the dissertation, DNA sticker algorithm of vertex-coloring problems is given out.
图的着色问题一直是图论中的重要问题,并且在离散数学和组合分析中有着重要的应用。
The coloring problem is always important problem in graph theory. In the discrete mathematics and combinatorial analysis, the coloring problem has a wide range of applications.
本文在前人研究的面着色问题基础上,运用欧拉公式和握手定理通过解方程组得到连通平面图的面色数。
In this paper, Euler's formula and Handshaking lemma is used to obtain the face chromatic number of a planar graph by solving equations.
本文在前人研究的面着色问题基础上,运用欧拉公式和握手定理通过解方程组得到连通平面图的面色数。
In this paper, Euler's formula and Handshaking lemma is used to obtain the face chromatic number of a planar graph by solving equations.
应用推荐