对交互式质询来说,因数分解足以胜任。
RSA公钥密码系统就是基于这种因数分解特性的。
RSA public-key cryptography is based on this property of factorization.
注意,同一个素数在因数分解中可以出现多次。
Note that, in the same prime factorization can appear multiple times.
在此练习中您要对一个给定的数字作因数分解。
RSA算法的安全性依赖于大数的因数分解的困难性。
The safe of RSA algorithm based on difficulty in the large number factorization.
本文推导了840点素因数分解的离散傅里叶交换的算法。
A prime factor DFT Algorithm for 840 Complex data is presented in this paper.
一个众所周知的例子是因数分解一个大的数字(尤其是因数较少的数字)。
A well-known example is factoring large Numbers (especially Numbers with few factors).
本论文提出一个新的因数分解法,希望能更快速的将一合成数分解。
In this thesis, we propose a new algorithm in order to factor an integer faster.
公钥密码算法RS A主要是依赖于大数的因数分解的困难性建立的。
Public key RSA mainly depends on the establishment of the factorization difficulty of a big integer.
在RSA实验室的网站上能看到更多关于RSA因数分解挑战的技术信息。
See RSA Labs website for more technical information about RSA Factoring Challenge.
这个因数分解是唯一的,被称为素数分解(primefactorization)。
This factorization is unique, known as prime decomposition (prime factorization).
您可能见到过大整数质因数分解,或是对复杂数据结构的庞大列表进行分类,这些都是长时间运行的操作。
You might see examples of prime factorizations of large integers, or sorting huge lists of complex data structures, and those are certainly long running operations.
基于因数分解和二次剩余困难性假设,构造了一个新的按序多重数字签名方案和广播多重数字签名方案。
A new sequential digital multi-signature scheme and a new broadcasting digital multi-signature scheme are proposed based on the difficulty assumption of factoring and quadratic residues.
如果应答者能够回答因数分解质询(Challenge),则说明他已经做了相当多的工作(或者偷偷地从生成那个组合的人那里得到了因数)。
Answering a factorization challenge is proof that the respondent has done a quantifiable degree of work (or obtained the factors surreptitiously from the person who generated the composite).
如果应答者能够回答因数分解质询(Challenge),则说明他已经做了相当多的工作(或者偷偷地从生成那个组合的人那里得到了因数)。
Answering a factorization challenge is proof that the respondent has done a quantifiable degree of work (or obtained the factors surreptitiously from the person who generated the composite).
应用推荐