特别地,当回归函数线性时,这类集合就是解释变量空间中的超平面。
In particular, when regression functions are linear, these sets become hyperplanes in explanatory variables Spaces.
提出一种基于输入集分类函数的新的距离度量方法,它与前传回归的正交最小二乘法相结合,不仅可以学习分类超平面的参数,而且可以选择重要的输入节点。
Combining the new measure with the forward regression orthogonal least square (OLS), not only the parameters of the classification hyperplane, but also the important input nodes can be obtaind.
提出一种基于输入集分类函数的新的距离度量方法,它与前传回归的正交最小二乘法相结合,不仅可以学习分类超平面的参数,而且可以选择重要的输入节点。
Combining the new measure with the forward regression orthogonal least square (OLS), not only the parameters of the classification hyperplane, but also the important input nodes can be obtaind.
应用推荐