本文主要通过对传统回声状态网络(esn)的结构和学习机理的研究,探讨了回声状态网络对混沌时间序列的预测方法。
In this paper, the traditional echo state network (ESN) through the structure and learning mechanism of the study, on the echo state network prediction method of chaotic time series.
通过选取具有储备池机制的回声状态网络ESN作为网络预测模型,建立一种直接预测方法,直接构建预测原点和预测时域之间的定量关系。
It selects ESN with the mechanism of the "reservoir" as predict model to set up a direct predict method which directly relates the prediction origin and prediction horizon.
通过选取具有储备池机制的回声状态网络ESN作为网络预测模型,建立一种直接预测方法,直接构建预测原点和预测时域之间的定量关系。
It selects ESN with the mechanism of the "reservoir" as predict model to set up a direct predict method which directly relates the prediction origin and prediction horizon.
应用推荐