而一般具有外加微扰作用力的含时薛定谔方程的求解需要通过李群分解。
The general time-dependent SchrOdinger equation with external perturbance needs to be resolved through Lie group decompositions.
该方法概念简单,使用方便,无需在编程上花费较多精力即可求解一维含时薛定谔方程。
It is simple in concept, convenient in operation and can be used to solve the one-dimensional time-dependent Schr? Dinger equation without more efforts in programming.
利用最小二乘法和龙格库塔方法求解含时薛定谔方程,研究了一维原子模型在超强激光场中的电离。
The ionization of one dimensional model atoms in ultra intense laser fields has been studied by solving time dependent Schrdinger equation using the least square fitting and the Runge Kutta methods.
在一维量子非线性晶格的研究中,特别是动力学的研究中,求解多粒子体系的含时薛定谔方程是不可避免的。
In the study of 1d quantum nonlinear lattices, especially in the study of dynamics, it is unavoidable to solve the many-body time-dependent Schrodinger equation.
针对宁西京教授提出激光脉冲延时方案,在含时薛定谔方程理论框架下探讨了各种参数对激光共振电离效率的影响;
The influences of some relevant parameters on resonance ionization efficiency in the recent laser pulse time-delayed scheme were analyzed with the framework of time-dependent Schrdinger equation.
用四个点电荷构造一个简单、新颖的静电势阱,并基于含时薛定谔方程和有限差分时间域方法,研究冷原子在该势阱中的量子力学效应。
We suggest a novel trap of trapping a neutral atom with static electric field of four point charges, and discuss the quantum effects of the cold neutral atom in the trap.
用四个点电荷构造一个简单、新颖的静电势阱,并基于含时薛定谔方程和有限差分时间域方法,研究冷原子在该势阱中的量子力学效应。
We suggest a novel trap of trapping a neutral atom with static electric field of four point charges, and discuss the quantum effects of the cold neutral atom in the trap.
应用推荐