本课程主要内容包括:向量代数与空间解析几何、多元函数微积分、无穷级数等。
This course mainly includes: vector algebra and analytic geometry in space, multivariable calculus and infinite series.
课程内容包括空间解析几何与向量代数、多元函数微分学、多元函数积分学和无穷级数等几大板块。
This course consists of several major parts such as vectors and analytic geometry derivatives integration and series.
主要内容有:向量代数、空间的平面和直线、特殊曲面和二次曲面、一般二次曲面和一般二次曲面。
The main content: vector algebra, plane and linear space, special surfaces and secondary surfaces, general quadratic surfaces and general quadric surface.
利用向量代数中定比分点公式的向量形式,给出了一种非常简明有用的求容积比中线段比的新方法。
Applying the vector representation of formula for definite proportional division point in vector algebra, this paper obtains a new useful method of compunction for segment ratio in volume ratio.
第一章是向量代数,主要介绍向量的线性运算、向量的内积、向量的外积、向量的混合积和双重外积。
The first chapter is about vector algebra, introduces the vector of linear operations, inner product of vectors, vector outer product, vector product and double mixed exterior product.
课程内容包括常微分方程、空间解析几何与向量代数、多元函数微分学、多元函数积分学和无穷级数等几大板块。
This course consists of several major parts such as ordinary differential equation vectors and analytic geometry derivatives integration and series.
本文建立了八元向量代数,它既是一种方阵代数,又作为一个更加完备的运算系统而包含了复数、矢量和四元数。
The eight-vecter algebra is found in the paper, as a kind of square matrix algebra and as more complete operation system containing the complex number vecter algebra and quaternion numbers.
该方法将图像投影到SVDQ的各个正交基上,得到投影系数向量。将此向量作为图像的代数特征并用于彩色图像识别中。
Firstly, the image is projected on to the orthogonal basis of SVDQ, then the projection coefficient vector is used as algebraic feature of image and applied to recognition.
向量组的线性相关性是线性代数中的重要概念,也是解决问题的重要的理论根据。
Linear relation of vector group is an important concept in linear algebra and is also an important theoretical foundation of solving problems.
讨论了线性代数中矩阵的秩、向量组的秩与线性方程组的秩之间的关系。
This paper describes the relationship between the rank of matrix, the rank of vector group and liner equation group in the linear algebra.
本文主要研究欧几里德若当代数向量优化的谱标量化。
In this paper, we study the scalarization over Euclidean Jordan algebra vector optimization problem.
讨论了阶化向量空间和李超代数的基本性质。
The general properties of graded vector space and Lie superalgebras are discussed.
与在向量空间上构造的方法比,有限域上置换多项式的代数次数等性质更容易研究。
Compared to the construction over vector space, it is easier to study the properties of permutation polynomials, like algebraic degree.
向量知识在代数、几何、三角等数学分支中有着十分广泛的应用,利用向量这一工具可巧妙而简捷地处理多种题型。
The vector is widely applied to algebra, geometry and trigonometry. With it being properly used, many problems can be solved flexibly and easily.
身体重要思想的载体,推广到向量空间,研究了线性代数。
The physically important concept of vectors, generalized to vector Spaces, is studied in linear algebra.
本征脸法将图像看做矩阵,计算本征值和对应的本征向量作为代数特征进行识别。
Taking image as a matrix, an eigenface algorithm USES eigenvalues and corresponding eigenvectors in recognition.
回路矩阵是一个资源有向图全部资源回路的代数描述,并且它与补集及t -特征向量矩阵相互等价。
Circle matrix is the algebraic description of all the resource circles in a directed graph, and equivalence reciprocally to that one of complementary set and T-characteristic vector.
借助覆盖向量刻画了代数免疫布尔函数的特征,给出布尔函数代数免疫不大于某确定值的充要条件。
A sufficient and necessary condition is given that the algebraic immunity of a Boolean function is not more than a fixed value.
本文剖析了线性代数中伴随矩阵、行向量与列向量的乘积、正交矩阵几个较难掌握的概念,由此引出这些概念的一些基本特征和性质。
This article analyzes a few profound concepts, such as companion matrix, line vector, column rector, orthogonal matrix, and recommend many qualities, which are difficult to grasp for many students.
这是抽象代数领域。这里一个重要的概念是,向量,推广到向量空间,以及线性代数研究。
An important concept here is that of vectors, generalized to vector Spaces, and studied in linear algebra.
利用代数的方法获得了共点有限向量集的一类几何不等式 。
A research into the semi-norms on a finite-dimensional vector space;
向量是近代数学最基本的概念之一,它具有代数形式和几何形式的“双重身份”,是沟通几何、代数、三角等内容的桥梁。
The vector is one of the most basic concepts in modern mathematics, it has a "dual status" - "Algebra form" and "geometry form". It is a bridge to link up the contents of geometry.
向量是近代数学最基本的概念之一,它具有代数形式和几何形式的“双重身份”,是沟通几何、代数、三角等内容的桥梁。
The vector is one of the most basic concepts in modern mathematics, it has a "dual status" - "Algebra form" and "geometry form". It is a bridge to link up the contents of geometry.
应用推荐