并在此基础上讨论了后验误差估计。
后验误差估计是自适应有限元分析的关键环节。
A posteriori error estimation is the key link of the adaptive finite element analysis.
后验误差估计是实现自适应有限元计算的关键性手段。
A posteriori error estimates serve as a key to realize the adaptive finite element computation.
本文分析了四种基于局部量计算的恒定磁场后验误差估计方法。
In this paper, four methods for local error estimation in finite element solution are described and analyzed.
给出矩形域上弱奇异积分算子本征值问题分片零次多项式配置法的后验误差估计式。
The posteriori error estimators in the collocation method for integral equation eigenvalue problem with a weakly singular kernel are presented.
该方法同时还给出了权值估计的后验概率密度和误差条,从而获得权值最优值的不确定性测量。
Simultaneously, this method provides the posterior probability density and the error bars of estimated weights, which deduces the uncertainty of reconstruction.
该方法同时还给出了权值估计的后验概率密度和误差条,从而获得权值最优值的不确定性测量。
Simultaneously, this method provides the posterior probability density and the error bars of estimated weights, which deduces the uncertainty of reconstruction.
应用推荐