采用自适应变步长的后向传播算法(ABPM)构建了一个人工神经网络用水量预测模型。
The following paper constructs a artificial neural network - named water quantity predicting model, using automatically adapting and step-self-changing back propagation method(ABPM).
实验结果表明前馈后向传播网络的性能最好,与基准模型比较平均错误率下降54.4%。
Experiment results show that feed-forward backpropagation network achieves the best performance, which reduces average error rate by54.4%.
实验结果表明前馈后向传播网络的性能最好,与基准模型比较平均错误率下降54.4%。
Experiment results show that feed-forward backpropagation network achieves the best performance, which reduces average error rate by54.4%.
应用推荐