它是一个显式方法,同欧拉法一样,每积分一步,只需计算一次右函数,但它的稳定区域与欧拉法不同。
It is only needed to calculate the right function once for each integration step. But the stability domain is different from the Euler method.
(右大括号)与声明函数的那一行代码头部对齐。
The (right curly brace) is aligned with the line containing the beginning of the declaration of the function.
N_RBRAC是右括号,即函数的结束部分。
通常使用成员函数作为点操作符的右操作数来调用成员函数。
When we use a member function as the right-hand operand of the dot operator, we usually do so to call that function.
但比较容易忽略的是,调用这样的函数时,传递一个右值(第2.3.1 节)或具有需要转换的类型的对象同样是不允许的。
What may be less obvisous is that we also cannot call such a function with an rvalue ( Section 2.3.1, p. 45) or with an object of a type that requires a conversion.
着重讨论了当一个属性既出现于函数依赖的左部,又出现于函数依赖的右部时成为主属性的必要条件和充分条件。
The essential and full condition that an attribute being a primary attribute when it appears in both the left and the right of Functional Dependencies are discussed.
并讨论说明了导函数的右(左)极限与右(左)导数之间的关系。
And demonstrates the relations between the right (left) limit of function and right (left) derivative.
给出了关于右等价群有限决定的光滑函数芽在函数芽运算下仍保持有限决定的一些充分条件。
In this paper are given some of sufficient conditions for finite determinacy relative to right equivalent group of smooth function-germs to be preserved under the operation of function germs.
本文对光滑函数芽在右等价群的各种子群下的有限决定性展开了研究,对光滑函数芽在函数芽运算下关于右等价群的有限决定性也进行了讨论。
In this paper, we carry out a research into the special case, that is the finite determinacy of smooth function germs under various subgroups of right equivalent group.
由一错例引出了讨论导函数在分段点处的左、右极限与对应函数的左、右导数相等的分段函数在分段点处导数的一种求法。
A false example is given to educe the discussion of a solution to the derivative of subsection function at the point of subsection.
由一错例引出了讨论导函数在分段点处的左、右极限与对应函数的左、右导数相等的分段函数在分段点处导数的一种求法。
A false example is given to educe the discussion of a solution to the derivative of subsection function at the point of subsection.
应用推荐