文中证明了该问题古典解的局部存在性、整体存在性和唯一性。
The local existence, the global existence and the uniqueness of a classical solution of this problem are proved.
利用其等价的抛物拟变分不等式,得到了该问题古典解的存在唯一性。
We obtain the existence and uniqueness of the classical solution by its equivalent parabolic quasi variational inequality.
文中利用某类函数,得到了一类非线性散度型方程及方程组古典解的局部估计。
In this paper, the local estimates for the classical solutions of a class of equations and systems in divergence form is obtained by certain kind of function.
在一定条件下,证明一类拟线性伪双曲方程的第一初边值问题古典解的存在性。
The present paper provides a class of quasilinear pseudohyperbolic equation of the existence of classical solutions of the first boundary value problem under some suitable structure conditions.
我们将利用正则化方法和上下解技巧给出局部古典解和整体古典解的存在唯一性。
We will use regularization method and upper and lower solution technique to give the local existence, global existence and uniqueness results.
考虑了一个具有非线性边界条件的抛物系统,证明了这个问题非负古典解的存在唯一性。
A parabolic system with nonlinear boundary conditions is considered. T he existence and uniqueness of a nonnegative classical solution are proved to this problem.
研究一类强耦合拟线性退化抛物方程组初边值问题正古典解的局部存在、全局存在与非全局存在性。
Local existence, global existence and nonexistence of classical solutions for a degenerate and strongly coupled quasilinear parabolic system were studied.
另外,本部分还研究了相应问题古典解的爆破准则。关于弱解的唯一性和古典解的整体存在性尚未得到证明。
But the uniqueness of the weak solutions and the global existence of the classical solution are not obtained.
我们证明了该问题存在古典整体解。
运用正则化方法和上下解技巧证明了上述问题的古典正解的局部存在性及其可延拓性。
The method of regularization and the technique of upper and lower solutions are employed to show the local existence and the continuation of the positive classical solution of the above problem.
主要研究了热方程与波方程的非古典势对称群生成元及相应的群不变解。
Some nonclassical potential symmetry generators and group-invariant of heat equation and wave equation were determined.
本文给出一个不定方程非负整数解的组数的组合计数公式,说明了它在求解一类与数字有关的古典概率方面的应用。
This paper introduces the problems of some identical equation solved by the numerical characters of the classic probability and stochastic variable.
非古典对称方法在经典的李对称方法的基础上添加了初始方程的表面不变条件,从而既简化了计算,又有助于得到更多的对称及群不变解。
Compared with the classical Lie method, it adds an invariant surface condition in the formation. Consequently, it makes calculation easy and obtains more group-invariant solutions.
非古典对称方法在经典的李对称方法的基础上添加了初始方程的表面不变条件,从而既简化了计算,又有助于得到更多的对称及群不变解。
Compared with the classical Lie method, it adds an invariant surface condition in the formation. Consequently, it makes calculation easy and obtains more group-invariant solutions.
应用推荐