因此,位错系统是一个反应-扩散系统。
Therefore a dislocation system is a reaction-diffusion system.
本文第三章讨论的是如下非局部边界条件的反应扩散系统解的存在性和唯一性。
In the chapter there of this paper, we consider the uniqueness and the existence of solutions of the following reaction diffusion system with nonlocal boundary conditions.
对另一类反应扩散系统,在固定边界条件下,在二维空间所形成的有序结构进行了研究。
The ordered structures forming in two-dimensional space for another class of the reaction-diffusion systems are studied under the fixed boundary condition.
本文着重研究了几类三维或三维以上的反应扩散生态系统,得到了一些有益的结果。
In this paper, several kinds of reaction-diffusion ecological systems with three or more than three equations are studyed and some valuable results are obtained.
讨论了一类带非局部源的反应扩散系统。
The authors deal with a reaction-diffusion system with nonlocal sources.
研究这类化学反应扩散系统,重要的是抓住系统在临界点附近动力学行为的共性。
To study the chemical reaction diffusion systems, it is important to master the kinetics generality of systems near critical points.
利用单调方法讨论了一类含时滞及周期系数的反应扩散系统的竞争-竞争-互惠模型。
By using the monotone method, a periodic reaction diffusion system of a competitor-com - petitor-mutualist is investigated.
研究方向包括时滞微分方程和反应扩散方程理论及其在神经网络和生物动力系统方面的应用。
My current research interests include theory of delay differential equations and reaction-diffusion equations and also their application to neural networks and biological dynamic systems.
利用反应扩散方程的比较原理给出了系统存在周期解的充分条件。
Firstly sufficient conditions for the existence of periodic solution are obtained by comparison theory of reaction-diffusion differential equations;
利用反应扩散方程的比较原理给出了系统存在周期解的充分条件。
Firstly sufficient conditions for the existence of periodic solution are obtained by comparison theory of reaction-diffusion differential equations;
应用推荐