对于所给的双曲型方程组,经特征变换变成了便于作数值计算的形式。
The form of the equations has been changed with feature transformation so as to calculate conveniently.
提出了“利用反双曲正弦函数变换提高数据列光滑程度”的新结论,获得了递增时间序列改善的自回归预测新方法。
A new conclusion is put forward, in which the smooth degree of the data row can be enhanced by means of the arc-hyperbolic sine function transformation.
利用辛变换条件得到了一些新的切比雪夫多项式公式、三角恒等式和双曲恒等式。
In this paper by using the symplectic transformation condition, some new formulas including Chebyshev Polynomial, trigonometric identity, hyperbolic identity were obtained.
这个方法使用了水土势双曲正弦变换的隐式差分格式。
The method is an implicit iterative scheme with a hyperbolic sine transform for the matric potential.
证明了利用反双曲正弦函数变换能提高数据列的光滑程度,给出了改善的自回归预测方法,并且举例加以论证。
This paper proves that the smooth degree of a data row can be increased by transforming the counter-hyperbolic sine function.
方法分析双曲对称群的特点,改造欧式平面上构造经典分形的IFS迭代函数系,利用这种迭代函数系与双曲平面对称变换构造出组合IFS,通过随机挑选组合IFS中的仿射变换,构造双曲排列的分形集。
We recall the characteristics of the groups with hyperbolic symmetry and improve the IFS iterated function systems which are used to construct the classical fractal sets in the Euclidian plane.
方法分析双曲对称群的特点,改造欧式平面上构造经典分形的IFS迭代函数系,利用这种迭代函数系与双曲平面对称变换构造出组合IFS,通过随机挑选组合IFS中的仿射变换,构造双曲排列的分形集。
We recall the characteristics of the groups with hyperbolic symmetry and improve the IFS iterated function systems which are used to construct the classical fractal sets in the Euclidian plane.
应用推荐