本文主要研究双二次多项式的动力系统。
D dissertation is concerned with the dynamics of biquadratic polynomials.
构造的曲面是分片双三次有理参数多项式曲面。
This surface is a piecewise bi-cubic rational parametric polynomial surface.
另外用代数多项式和双正弦级数组成的解来满足角点条件。
Moreover, the solution composed by algebraic polynomial with double sine series is used to satisfy the corner conditions.
计算了在最弱受约束电子势模型理论下使用双广义拉盖尔多项式的氦原子基态能量。
We calculated the he atom ground-state energy using a double generalized Laguerre polynomial in the weakest bound electron potential model (WBEPM) theory.
利用辛变换条件得到了一些新的切比雪夫多项式公式、三角恒等式和双曲恒等式。
In this paper by using the symplectic transformation condition, some new formulas including Chebyshev Polynomial, trigonometric identity, hyperbolic identity were obtained.
基于这种基函数,建立了一种带多个形状参数的二次双曲多项式曲线,该类曲线对于非均匀节点为C1连续。
Based on the basis functions, quadratic hyperbolic polynomial curves with multiple shape parameters are constructed. These curves are C1-continuous with a non-uniform knot vector.
公式表明,不完全双二次多项式的DEM传递误差与双线性多项式的传递误差相同。
The formula shows that the propagation error from biquadratic polynomial is the same as the error from linear polynomial.
公式表明,不完全双二次多项式的DEM传递误差与双线性多项式的传递误差相同。
The formula shows that the propagation error from biquadratic polynomial is the same as the error from linear polynomial.
应用推荐