应用参变量变分原理推导了复合模量在弹性及塑性状态下的解析解。
The analytical solutions of composite modulus in both elastic and plastic conditions are deduced by applying parametric variational principle.
借助于参变量变分原理和分级方法,具有广义本构关系单元的结构可以得解。
Using parametric variational principle and hierarchical method, the generalized constitutive models can be solved.
借助于参变量变分原理和分级方法,具有广义本构关系单元的结构可以得解。
Using parametric variational principle and hierarchical method, the generalized constitutive models can be solved.
应用推荐