与其它合作博弈解对比,该方法更符合工程实践。
Compared with classical methods, the solution obtained from the approach is more consistent with the practice.
发电厂商竞价上网能否获胜的关键就是如何确定报价曲线,而其竞价上网的博弈解又是获取报价曲线的关键。
How to decide generation units bidding curves is the key to win the bid, while the game solution is the most necessary to get the bidding curves.
博弈论提供的只是对一个可能结果——即博弈的“解”——的集合的详细说明。
What game theory offered was a specification of a set of feasible outcomes -- the "solution" of the game.
采用线性战略组合,解出了该贝叶斯博弈的均衡解,并且定义了配电商的成本和电能消费者的收益。
This paper interprets the balanced results of Bayes game with linear strategy, and gives out the definitions of electricity utility cost and electricity customers profit.
基于双方的效用函数,以消除医院道德风险和自选择为目的,运用博弈理论推出了最优付费方式的博弈均衡解。
On the basis of the two sides utility function a first best payment system has been provided to eliminate moral hazard and self-selection from hospital by game theory.
运用信息经济学中的土地租佃理论,建立了消费信贷博弈模型,并求出了均衡解。
Using land tenancy theory in the information economics, a consumer credit game model and finds an equilibrium solution is constructed.
在讨论了一次博弈模型和流速均衡解析解的基础上,对基于无限重复博弈模型的流速与拥塞控制行为进行了研究。
After the one-shot game model and flow equilibrium solution are discussed, the behaviors of flow and congestion control based on infinite repeated game model further is studied.
通过利用非合作博弈论方法建模,本文给出了这种情况下R&D投资额的纳什均衡解。
On the basis of a non - cooperative game - theoretic model, we provide R&D investment Nash equilibrium outcome under duopolistic competition.
在完全信息连续时间动态产量博弈中,均衡解和完全信息静态产量博弈的古诺均衡相同。
The equilibrium of complete information dynamic Duopoly quantity competition in continuous-time is the same with Cournot equilibrium of complete information static quantity competition.
第三部分围绕完全信息动态博弈给予其合理的均衡解,即子博弈完美纳什均衡。
During the third part we introduce sub game perfect Nash equilibrium, which is the rational equilibrium solution of dynamic game of perfect information.
该算法将封闭世界模型上的概念图推理转化为对博弈树根节点的可解性标示过程。
The algorithm translates the inference of Conceptual-Graphs, in a Closed World Model, to marking processes in Game-Trees.
由于显式闭环纳什均衡解反映了理性人在动态博弈时的行为方式,因此关于它的研究也具有重要的实际意义。
The explicit closed-loop Nash equilibrium solution reflected the rational behavior in the dynamic game, so the research on it also has important practical significance.
然后运用博弈论的思想,对担保三方主体的收益进行了博弈分析,得出了完全信息下和不完全信息下三方收益最大的博弈均衡解。
Then use the thoughts of game theory, analyzed the incomes of tripartite subject, Drawn out the complete information and incomplete information game model.
针对如何解算n人非合作的动态博弈对策中的纳什均衡解问题,提出一种利用退火回归神经网络极值搜索算法解算纳什均衡解的方法。
An algorithm is proposed to solve the Nash equilibrium solution for ann-person noncooperative dynamic game by an annealing recurrent neural network for extremum seeking algorithm (ESA).
本文在对利益相关者进行合理界定的基础上,运用合作博弈数学模型,求证利益相关者博弈的子博弈精炼纳什均衡解的唯一性。
Based on reasonable definition of stakeholder and cooperative gambling model, the uniqueness of sub-gambling refining Nash equilibrium among stakeholders is tried to get.
得出其博弈的纯策略的纳什均衡解。
本文从博弈论的角度,建立一个位置-产量博弈模型来探讨此问题,通过求解博弈模型的均衡解,得出的结论是,当银行产品替代性较大时,银行的分销渠道应尽量分散化;
The conclusion drawn by obtaining solutions for the game model is that the bank distribution channels should be dispersed as much as possible when the bank products are substitutes;
该文根据电力市场的特点,提出一种新的博弈模型来模拟发电商的策略行为,推导了该模型的纳什均衡解。
In this paper, a new oligopolistic game model is put forward to finish the above simulation. The formulae of Nash equilibrium are obtained based on complete information.
用博弈论求解该模型,得到了完美贝叶斯均衡解,进而给出了产险公司在谈判中能获得的最大期望收益与投保大户的最优策略。
Then the perfect Bayesian equilibrium of the game model in the form of a proposition is given, and the proposition is proved in detail by backward induction.
建立了完全信息下企业间的绿色营销博弈模型,讨论了不同条件下博弈模型的不同解,并据此提出了取得模型帕累托解的措施。
This paper builds the green marketing game model among the enterprises with the complete information, discusses its different solution under the different condition, and$…
基于工程索赔的时效性、客观性和动态性等特征,建立其博弈模型;利用完全信息动态博弈理论在不同条件分析博弈双方(承包商和业主)的选择和行为,得出纳什均衡解。
Through analyzing the choice and behave of both parts of the game(contractor and owner) with "dynamic game with complete information"theory, the Nash equilibrium solution of the model is attained.
基于工程索赔的时效性、客观性和动态性等特征,建立其博弈模型;利用完全信息动态博弈理论在不同条件分析博弈双方(承包商和业主)的选择和行为,得出纳什均衡解。
Through analyzing the choice and behave of both parts of the game(contractor and owner) with "dynamic game with complete information"theory, the Nash equilibrium solution of the model is attained.
应用推荐