首先,本文将引人中位数来定义随机支苟值的偏好,并在此偏好的基础上进一步定义带随机支付双矩阵博弈的纳什均衡。
In this paper, the preferences on stochastic payoffs are defined by quantiles, and the Nash equilibrium of the bimatrix game with stochastic payoffs is given base on the preferences.
研究显示参与者策略选择的稳定性受博弈系统最初状态及支付矩阵相关参数的设定有关。
The result shows that the stabilization of participants' strategies is related to the parameters in payoff matrix and influenced by initial status of the game system.
对支付矩阵建立了进化博弈模型,分析了参与者策略选择动态进化过程。
On the base of assumed payoff matrix, we constructed the evolutionary game model to analyze the dynamic evolutionary procedure of participants' choice of strategies in games.
分析结果发现,该系统的演化方向与双方博弈的支付矩阵相关,也受到系统初始状态的影响。
The results show that the systems evolutionary direction is closely related to players payoff, and influenced by systems initial status.
分析结果发现,该系统的演化方向与双方博弈的支付矩阵相关,也受到系统初始状态的影响。
The results show that the systems evolutionary direction is closely related to players payoff, and influenced by systems initial status.
应用推荐