应用单调有界定理证明一类数列的收敛过程中,一般高等数学和数学分析教材中,处理的思路方法不易想到或过程较为繁琐。
In many current textbook, the monotone bounded theorem is used to the proof the convergence of a kind of but this method is uneasy to series, understand.
你的输出应该从2992开始到满足需求最大的四位数字结束(数列单调递增)。
Your output is to be 2992 and all larger four-digit Numbers that satisfy the requirements (in strictly increasing order).
定理7.1。如果一个数列单调并且有界,这个数列才能收敛。
THEOREM 7.1. A monotonic sequence converges if and only if it is bounded.
我们乐意处理单调递增数列或单调递减数列,因为特别容易确定数列的收敛或发散。
Monotonic sequences are pleasant to work with because their convergence or divergence is particularly easy to determine .
此文对“单调有界数列必收敛”两个条件单调,有界的证明方法加以归纳,并就两个条件的关系及一类特殊情况加以讨论,得出结论。
The essay is a summary concerning how to demonstrate the two prerequisites monotone and bounds in "monotonous and boundary number line necessarily converge."
此文对“单调有界数列必收敛”两个条件单调,有界的证明方法加以归纳,并就两个条件的关系及一类特殊情况加以讨论,得出结论。
The essay is a summary concerning how to demonstrate the two prerequisites monotone and bounds in "monotonous and boundary number line necessarily converge."
应用推荐