本文是作者在多连通区域单叶函数领域研究成果的总结。
The present article is an account of results on univalent functions in multiply connected domains obtained by the author.
单叶函数的系数估计问题、极值问题研究一直倍受各国数学家高度关注。
The problems of coefficient estimates and extreme values of univalent functions are highly emphasized all the time by mathematicians from all over the world.
用初等方法得到单叶函数族S中函数平均模数有关的一个较精密估计,改进了现有结果。
In this paper, applying a certain elementary methods, we obtain a more precise estimation related to the mean modulus of the univalent functions in class S. Thus the old result is improved.
本文研究一类广义负系数单叶解析函数,得到了准确的系数估计,偏差定理,凸性半径和星形性半径。
In this paper, we study a generalized class of univalent functions with negative coefficients. Sharp coefficient estimates, distortion theorem and radius of convexity and starlikeness are obtained.
第三章:作者研究了某一类负系数的单叶调和函数,得到它的一些充要条件等。
In the last chapter: the author investigates certain kind of harmonic univalent function with negative coefficients and obtain some sufficient-necessary conditions for this new kind function.
它共分六个部分:映射定理;单叶调和函数的数值估计;特殊映射;变分方法;境界性质和在极小曲面中的应用。
It contains six parts: mapping theorems, numerical estimations of univalent harmonic functions, special mappings, variational method, boundary behavior and applications to minimal surfaces.
本文的第四章研究的是单叶调和函数模的偏差估计,我们将拟共形映射理论与调和函数理论相互结合起来,用新定义的角伸缩商宋对单叶调和函数的模给出新的估计。
We research it by some new knowledge combining the quasiconformal theory with the harmonic theory. A new estimate of modulus is given which is relation to the angular dilatation.
一类单叶解析函数族。
一类单叶解析函数族。
应用推荐