刻划了S-正则半群上的极大幂等元分离同余并给每个S-正则半群一个基本表示。
The maximum idempotent - separating congruence on a S - semigroup is characterized and a fundamental representation of a such semigroup is given.
左半正规纯正半群是幂等元集形成左半正规带的纯正半群。
A left seminormal orthodox semigroup is an orthodox semigroup whose idempotents form a left seminormal band.
具有逆断面的正则半群的格林关系在研究该类半群的性质时起到非常大的作用。
The Green relations on a regular semigroup with inverse transversals play important roles in studying the nature of this sort of semigroup.
逆半群和具有逆断面的基础纯正半群的结构是比较简单的。
The constructions of inverse semigroups and fundamental orthodox semigroups with inverse transversals are simple.
首先在正规子群与同余的关系的基础上,采用类比的方法,从同余的角度给出了群的正规列幂半群的另一种刻画。
In this paper, based on the relation between normal subgroup and congruence, another depiction of normal series power semigroup is given from the angles of congruence by the method of analogy.
在给出它的若干特征之后,指出这一类半群也是群的矩阵的幂零元-理想扩张,但反之未必成立。
Also, after some prelimenaries, We have Obtained that the semigroup is further nil-extension of the matrix of groups, but the converse is not all true.
结论推广了线性算子半群的范数连续性质保持,丰富和完善了非线性算子半群的理论。
The result derived extends persistence of norm continuity of linear strongly continuous semigroups and enriches theory of semigroups of nonlinear operators.
如果一个半群的每个真双理想都是群,而它本身不是群,则称这个半群为i半群。
A semigroup is called an I-semigroup if it is not in itself a group but its every real-bi-ideal is group.
半群的研究在代数学的理论研究中占有很重要的地位。 其中格林关系在半群理论的研究中有着重要的意义。
The research of semigroup plays an important role in the research of the theory of algebra, and the Green's equivalences are especially significant in the study of semigroups.
本文主要研究了左正则半群,正则子集以及GV -半群。
Left regular semigroups, regular subsets and GV-semigroups are studied in this paper.
介绍弱左正则幺半群的概念,指出在可交换半群中,完全正则、弱左(右)正则和完全幂等是等价的。
In this paper, we introduce the notion of left weakly regular semigroup and show that in a commutative semigroup, the complete regularity, regularity, left resp.
定义了集合上的反部分映射,并由此给出了集合上的变换半群的对偶半群的一个新刻划。
This paper defined anti-part mapping on set and has given a new deseription of dual semigroup of transformation semigroup on set.
给出了布尔群代数半群中的幂等元、极大子群和正则元的结构以及幂等元和正则元的个数。
The structure of the idempotent elements, regular elements and maximal subgroups and the number of the idempotent elements and regular elements in Boolean group algebra are given.
本文研究积分双半群与有界线性算子双半群的关系。
The relationship between integrated bisemigroups and bisemigroups of linear bounded operators is investigated.
本文主要讨论了半群的加细半格在研究半群的性质和结构中的若干应用。
The main topic is some applications of refined semilattices of semigroups in the study of properties and structures of semigroups.
讨论了含最大元的偏序半群的若干性质,给出了含最大元的偏序半群中某些子集构成理想的充要条件。
Some properties of partially ordered semigroup containing the greatest element are discussed, the sufficient and necessary conditions that some subsets of it make up an ideal are given.
给出了两个半群的半直积和圈积为矩形拟正则半群和矩形群的充要条件。
This paper gives necessary and sufficient conditions for the Semidirect and Wreath Products of two semigroups to be Rectangular Quasi-Regular Semigroups (Rectangular Groups).
其次,对这类半群上的群同余、最小群同余、正则同余、幂等分离同余做了进一步研究。
Then group congruences, the least group congruence, regular congruence, and idempotent-seperating congruence on such semigroups are obtained.
利用弱逆和核迹方法,刻画了毕竟纯整半群上的矩形群同余。
The rectangular group congruences on eventually orthodox semigroup were characterized by means of weak inverse and kernel-trace approach.
一个有限半群是满足左正则性条件的IC富足半群当且仅当它是一个幂等元形成左正则带的纯整超富足半群,但满足左正则性条件的无限IC富足半群不都是幂等元形成左正则带的纯整超富足半群。
A finite semigroup is an IC abundant semigroup satisfying the left rgularity condition if and only if it is an orthodox superabundant semigroup whose idempotents form a left regular band.
推广了已有拓扑半群或者拓扑群的一些结果。
Thus the corresponding results related to topological semigroups or topological groups have been generalized.
对序半群s的素模糊理想进行了研究,借助序半群s的模糊点和模糊左(右)理想给出了序半群s的素模糊理想的刻画。
The aim of this paper is to study prime fuzzy I deals of an ordered semigroup s to characterize prime fuzzy ideals of s by fuzzy points and fuzzy left (right) ideals of s.
本文主要研究右迁移单迁移线性半群、迁移单迁移线性半群和拓扑迁移半群。
In this dissertation, we mainly consider transitive linear semigroups and topologically transitive linear semigroups of M_n (c).
本文从模糊点的角度来研究模糊半群上的模糊理想,利用模糊点来刻画模糊半群上的模糊理想。
In this paper, Author firstly USES fuzzy points to study the fuzzy ideals on fuzzy semigroups and a new characterizations of fuzzy ideals on fuzzy semigroups is obtained.
介绍了积分半群及积分半群的解析族,阐述了积分半群的无穷小生成元解析、积分半群解析和预解式解析三者之间的关系。
The paper introduces integrated semi-groups and analytic families of integrated semi-groups, the relations among the three natural ways to understand "analyticity" of the family are clarified.
刻划了具有P -正则自同态幺半群的二分图,讨论了字典序积图的自同态幺半群的P -正则性。
Bipartite graphs with P-regular endomorphism monoids are characterized. P-regularity of the endomorphism monoid of lexicographic product of graphs is discussed.
半群平移壳理论是半群代数理论的一个重要部分,在半群的理想扩张理论中占有重要地位。
The theory of translational hull of semigroups is an important branch of the algebra theory and plays a basic role in the theory of ideal extensions of semigroups.
半群平移壳理论是半群代数理论的一个重要部分,在半群的理想扩张理论中占有重要地位。
The theory of translational hull of semigroups is an important branch of the algebra theory and plays a basic role in the theory of ideal extensions of semigroups.
应用推荐