运用广义最小二乘法研究了一类半线性模型中的参数、函数的估计量问题,并证得估计量的一致性结果。
The estimators problem of parameters and functions in Semi-Linear Model were studied by Generalized Least Square method. The agreement between parameters and functional estimators was then presented.
在特征价格模型的应用中,函数形式的选择具有多样化,包括线性函数、对数函数、半对数函数等。
In the application of hedonic price model, it has a wide choice of function forms, including linear function, logarithmic function and semi-logarithmic function, etc.
本文在MATLAB环境下建立了二级倒立摆的半物理实时仿真模型,并应用线性二次型最优控制策略,设计了一个二级倒立摆lQR控制器。
This paper build a model of hardware in the loop using MATLAB. The linear quadratic optimal control strategy is adopted to design a LQR controller of double inverted pendulum.
当前要想了解我国的居民可支配收入与消费性支出,就必须利用半线性回归模型的优良拟合性质进行分析。
In this paper, based on the large sample property of semilinear model, we analyze the relation ship between living expenditure and disposable income in China.
高斯模型与实验半方差变异函数的拟合效果最好,其次是线性模型。
The best fitted theoretical model for the semivariogram is Gaussian model, and then the linear model.
主要考虑了同方差型的半参数线性回归模型中参数的随机加权最小二乘估计(RWLSE)。
The randomly weighted least square estimator (RWLSE) for the parametric component in semi-parametric regression models was mainly discussed.
采用磁流变阻尼器半主动控制理论和方法,建立座椅可控磁流变阻尼非线性控制系统的数学模型。
Using magneto-rheological damper, semi-active control theory and method, mathematical model of a controllable magneto-rheological damping and nonlinear control system is established for seats.
目的放宽经典线性模型中的解释变量的线性假定和探讨半参数回归分析模型。
Objective To relax linear assumption of explanatory variable in classical linear model and explore semiparametric regression model.
新模型由差分动态系统和非线性互补函数(NCP)转换的半光滑方程系统构成。
The new model is composed of difference dynamic system and semi-smooth equations reformulated by NCP.
提出更准确地描述准时化生产计划问题的非线性半无限规划模型。
To closely describe the just - in - time production planning problems a nonlinear semi - infinite programming model is proposed.
将该解析元与有限元相结合,构成半解析的有限元法,可求解任意几何形状和载荷的基于线性内聚力模型的平面裂纹扩展问题。
The new analytical element can be implemented into FEM program systems to solve crack propagation for plane problems with arbitrary shapes and loads.
将该解析元与有限元相结合,构成半解析的有限元法,可求解任意几何形状和载荷的基于线性内聚力模型的平面裂纹扩展问题。
The new analytical element can be implemented into FEM program systems to solve crack propagation for plane problems with arbitrary shapes and loads.
应用推荐