本文用半解析半离散的方法,对具有椭球封头的法兰连接圆筒压力容器进行了分析。
In the present paper the analysis of cylindrical pressure vessel with ellipsoidal closures and bolted flanged connections is performed by using analytical as well as discrete method.
在此框架下,我们得到了半离散与全离散情形的最佳逼近阶的估计。
Under this frame the optimal error estimates are obtained for semidisecrcte and fully discrete states.
给出了谱配置方法空间半离散格式的稳定性和误差估计。
The stability and convergence of spectral collocation method spatial semi-discretization are given.
提出了一种新的求解双曲守恒律方程(组)的四阶半离散中心迎风差分方法。
This paper presented a new semi-discrete central scheme for hyperbolic system of conservation laws.
同时为了进一步降低存局部潜在语义分类的存储空间的开销,采用半离散分解方法替代奇异值分解方法。
Meanwhile to reduce the cost of memory space, this paper takes the Semi-Discrete Decomposition Method rather than the Singular Value Decomposition.
该方法基于半模糊核聚类算法挖掘不同类别之间的衔接和离散信息,设计树型支持向量机的树型结构,克服其差错积累问题。
The method mines information on overlap between classes, designs the tree structure and overcomes the misclassification of tree-structured SVMs based on the semi-fuzzy kernel clustering algorithm.
讨论抛物型方程的混合元的各向异性分析,给出了半离散格式的误差估计。
In this paper we present the parabolic equation mixed element anisotropic analysis, we give error estimate of the semi-discrete scheme.
此法采用不等间隔的网格,将置于柱坐标系中的半无限介质进行离散化。
According to this method, a half infinite medium located in cylindrical coordinate system is made discrete by adopting unequal interval mesh.
讨论一类可数离散半群上概率测度卷积幂的弱收敛性,主要结果是利用局部群化的观点给出了概率测度卷积幂弱收敛的一个充分条件。
The main result is that we get a sufficient condition for the weak convergence of convolution powers of probability measures, by using the method of local grouplization.
文中给出了流函数方程及边界条件的坐标转换形式和离散格式,采用了强隐式(SIP)迭代法,分别对具有弓形和半弓形突体的直管进行了计算。
In this paper, the transformed forms of the flow function equation and boundary conditions and their difference expressions are given, and Strongly Implicit Procedure (SIP) iteration is used.
然后为了能有效求解所得模型,本文利用有限差分方法构造了一种半隐式的数值离散格式,同时给出了模型中的几个重要参数的估计。
Furthermore, in order to solve the proposed model efficiently, we construct a semi-implicit numerical scheme by using finite difference method and estimate some important parameters.
并用此单元求解线性抛物型方程,给出半离散格式和全离散格式的误差估计。
At first we give the energy norm and L_2-norm estimates of anisotropic bilinear finite element, then we prove the estimates of semidiscrete form and fulldicrete form of linear parabolic problem.
随着半精纺羊毛(也统称短毛)的使用不断增加,毛丛长度检测变得越来越重要。中国客户也常常抱怨长度离散在加工中的问题不断突显。
AWTA Ltd wants all Chinese customers to know that greasy wool Length Certificates are available for carding and semi-worsted wool in Australia.
在各向异性条件下,讨论了双曲型方程的一类非协调有限元逼近,给出了半离散格式下的最优误差佑计。
A class of nonconforming finite elements are applied to hyperbolic equation with semidiscretization on anisotropic meshes, the optimal error estimates are derived.
在各向异性条件下,讨论了双曲型方程的一类非协调有限元逼近,给出了半离散格式下的最优误差佑计。
A class of nonconforming finite elements are applied to hyperbolic equation with semidiscretization on anisotropic meshes, the optimal error estimates are derived.
应用推荐