给出了谱配置方法空间半离散格式的稳定性和误差估计。
The stability and convergence of spectral collocation method spatial semi-discretization are given.
讨论抛物型方程的混合元的各向异性分析,给出了半离散格式的误差估计。
In this paper we present the parabolic equation mixed element anisotropic analysis, we give error estimate of the semi-discrete scheme.
并用此单元求解线性抛物型方程,给出半离散格式和全离散格式的误差估计。
At first we give the energy norm and L_2-norm estimates of anisotropic bilinear finite element, then we prove the estimates of semidiscrete form and fulldicrete form of linear parabolic problem.
在各向异性条件下,讨论了双曲型方程的一类非协调有限元逼近,给出了半离散格式下的最优误差佑计。
A class of nonconforming finite elements are applied to hyperbolic equation with semidiscretization on anisotropic meshes, the optimal error estimates are derived.
文中给出了流函数方程及边界条件的坐标转换形式和离散格式,采用了强隐式(SIP)迭代法,分别对具有弓形和半弓形突体的直管进行了计算。
In this paper, the transformed forms of the flow function equation and boundary conditions and their difference expressions are given, and Strongly Implicit Procedure (SIP) iteration is used.
然后为了能有效求解所得模型,本文利用有限差分方法构造了一种半隐式的数值离散格式,同时给出了模型中的几个重要参数的估计。
Furthermore, in order to solve the proposed model efficiently, we construct a semi-implicit numerical scheme by using finite difference method and estimate some important parameters.
然后为了能有效求解所得模型,本文利用有限差分方法构造了一种半隐式的数值离散格式,同时给出了模型中的几个重要参数的估计。
Furthermore, in order to solve the proposed model efficiently, we construct a semi-implicit numerical scheme by using finite difference method and estimate some important parameters.
应用推荐