给出了动力半显式算法的迭代格式和收敛标准。
The iterative format and the convergence criteria of this algorithm are presented.
描述许多轨道控制问题的方程通常构成非线性半显式的微分代数系统。
The equations which describe many trajectory control problems naturally form nonlinear semiexplicit differential algebraic systems.
并用引入耗散项的方法建立了两类半显式差分格式,它们是无条件稳定的且可显式地进行计算。
And two classes of semi-explicit difference schemes are also established by introducing a dissipative term, they are unconditionally stable and can be calculated explicitly.
讨论描述希尔伯特空间最终范数连续半群特征的一个算子方程的解,给出这个解的一个显式表达式。
A new perturbation result on the Hilbert space for the eventually norm-continuous semigroups is obtained, which makes the perturbation of the semigroups more abundant.
讨论描述希尔伯特空间最终范数连续半群特征的一个算子方程的解,给出这个解的一个显式表达式。
A new perturbation result on the Hilbert space for the eventually norm-continuous semigroups is obtained, which makes the perturbation of the semigroups more abundant.
应用推荐