本课程全面介绍了半导体物理及半导体器件的理论基础。
This course deals with the theory base of semiconductor physics and semiconductor device in detail.
本课程是集成电路工程领域工程硕士的专业基础课程,旨在向学生介绍半导体物理与器件的基础知识。
This course is the key fundamental course for engineering graduates majored IC engineering, and to teach the fundamentals of semiconductor physics and devices.
由于半导体量子点具有零维电子特性,它不仅成为基本物理研究的重要对象,也成为研制新一代量子器件的基础。
Quantum dots (QDs), with zero-dimensional electronic properties, have stimulated great interest due to their important roles in fundamental physical research and for developing novel devices.
主要研究方向包括:低维半导体物理及器件、光电子器件性能预测、固态量子信息。
The studying direction: low dimensional semiconductor physics and device physics, predictive properties of optoelectronics devices and the solid state quantum information.
晶体管:用于放大、控制和生产电信号的半导体器件,是贝尔电话实验室的三位美国物理学家巴丁、布喇顿和肖克莱于1947年所发明;
Transistor: Solid-state semiconductor device for amplifying, controlling, and generating electrical signals. Invented at Bell Labs (1947) by John Bardeen, Walter H. Brattain, and William B.
因此只有通过对稀磁半导体材料微结构与物理特性的系统、深入研究才能获得关于材料性能的清晰理解,为器件研制打下坚实的基础。
Only by systematic and deep research on the microstructure and physical characteristics of DMS, the follow work on devices can be carried out.
半导体物理学是凝聚态物理学的一个重要分支,也是现代微电子器件工艺学的理论核心。
Semiconductor physics is recognized as one of the major areas of condensed matter physics and the core of modern micro-electronics device technology.
通过本课程的学习,学生应当掌握半导体器件的工作的基本原理,并能正确分析不同的物理条件与工作条件与器件电学特性的影响。
Upon completing this course, the student will understand their principles of operation, and how their electrical characteristics depend on their physical parameters and operating conditions.
通过本课程的学习,学生应当掌握半导体器件的工作的基本原理,并能正确分析不同的物理条件与工作条件与器件电学特性的影响。
Upon completing this course, the student will understand their principles of operation, and how their electrical characteristics depend on their physical parameters and operating conditions.
应用推荐