构技术和区间代数是演算法使用的主要技术。
Decomposition techniques and interval arithmetic are used in the algorithm.
用定性模空间和区间代数刻划了定性定量相结合的求解方法。
Used qualitative model space and interval algebra to depict the solving method combining the quality and quantity.
区间代数是一种用来进行定性时态推理的工具,它在人工智能中有着广泛的用途。
Interval algebra is a tool of qualitative temporal reasoning. It is widely used in artificial intelligence.
为了符合应用,关于时间的模型从离散的自然数和整数,延伸到稠密的线性实数,甚至扩展到区间代数和树代数。
The underlying model of time appropriate to the application can range from discrete natural numbers and integers to dense linear real numbers or to algebras of intervals and trees.
针对不同的变量类型,首次提出了数值型变量的区间集表示和基本运算方法,定义了布尔型区间代数和引用型区间代数;
The concept of numeric interval-set is proposed for the first time, and fundamental operations on interval-sets are defined.
研究了MV代数的区间拓扑和序拓扑及MV代数下的拓扑紧性、连结性、完备性和全序性。
This paper researched the interval topology and order topology of MV algebra as well as the tightness, connectedness, completeness and the total-orderness of MV algebra.
引入了N -可分效应代数的定义,证明了N -可分效应代数是区间效应代数且N -可分效应代数可嵌入到可分效应代数中。
We introduce the definition of N-divisible effect algebras, then we show that N-divisible effect algebras are interval effect algebras.
本文将区间数学这一近代数学工具引入尺寸链的分析计算,并提出了应用区间数学解尺寸链的方法,同时给出了应用举例及适应范围。
In this paper, interval mathematics, one of the modern mathematics tools, is introduced into the field of calculating and analysing dimensional chains, Examples are given.
本文将区间数学这一近代数学工具引入尺寸链的分析计算,并提出了应用区间数学解尺寸链的方法,同时给出了应用举例及适应范围。
In this paper, interval mathematics, one of the modern mathematics tools, is introduced into the field of calculating and analysing dimensional chains, Examples are given.
应用推荐