介绍了一种利用自组织特征映射(SOFM)网络的聚类功能进行全天星图识别的方法。
A method that applies the clustering function of SOFM (Self-Organizing Feature Maps) network is proposed for autonomous star pattern recognition.
本文简要介绍了自组织特征映射神经网络的基本原理,并利用其原理对土地复垦的条件分类进行了初步研究。
The paper briefly introduces the fundamentals of neural network of self-organizing feature map and on the basis of which discusses the classification of land reclamation conditions.
本文通过利用涌现自组织特征映射神经网络对数据进行聚类分析,并通过无边界u矩阵实现可视化功能。
To facilitate clustering analysis and visualization of data, the Emergent Self-Organizing Feature Maps (ESOM) and a boundless U-matrix are needed.
介绍了一种利用SOFM(自组织特征映射)网络的聚类功能进行全天星图识别的算法。
An autonomous star pattern recognition method using the tri-star clustering function of SOFM (Self-Organizing Feature Maps) network is described.
自组织特征映射(SOFM)网络利用神经元权值向量表示输入数据的结构、具有较好的分类能力。
The self-organizing feature map (SOFM) uses weight of network to present structure of the input data and has preferable ability of classification.
自组织特征映射(SOFM)网络利用神经元权值向量表示输入数据的结构、具有较好的分类能力。
The self-organizing feature map (SOFM) uses weight of network to present structure of the input data and has preferable ability of classification.
应用推荐