最后,利用概率神经网络技术进一步从关联故障特征中辨识出初始故障源。
Finally, PNN method is used to identify the primary fault sources from the features of correlative faults.
通过实例介绍了利用一种概率神经网络技术预测储层物性参数的方法。
Using an example, a method based on probabilistic neural network technique is introduced, which aims at prediction of petrophysical parameters for reservoir.
在特征提取的基础上,进一步利用径向基概率神经网络(RBPNN)分类器,实现了掌纹的自动识别。
Furthermore, on the basis of feature extraction, by utilizing the Radial basis Probabilistic Neural Networks (RBPNN), the palmprint recognition task could be implemented automatically.
在特征提取的基础上,进一步利用径向基概率神经网络(RBPNN)分类器,实现了掌纹的自动识别。
Furthermore, on the basis of feature extraction, by utilizing the Radial basis Probabilistic Neural Networks (RBPNN), the palmprint recognition task could be implemented automatically.
应用推荐