第三章研究了一元切触有理插值的存在性。
The chapter 3, we study the existence of univariate osculator rational interpolants.
对所构造的切触有理插值函数,还可通过选择参数降低其次数。
For osculatory rational interpolating function that we have constructed, we can reduce its number of times by choosing parameters.
已有的构造切触有理插值函数方法,多数是与连分式计算相联系的。
Existing methods of constructing oscillatory rational interpolating function are almost related to calculation of continued fractions.
本文将在切触有理插值中起重要作用的Salzer定理推广到了多元向量的情形。
In this paper, the important Salzer's theorem for rational interpolation is generalized to the multivariate vector valued case.
第四章主要讨论了二元向量有理插值的迭加算法及二元向量切触有理插值的表现公式。
The chapter 4, we mainly discuss the overlay algorithm of two-variable vector-valued rational interpolation and show formula of two-variable vector-valued contact interpolation.
第四章主要讨论了二元向量有理插值的迭加算法及二元向量切触有理插值的表现公式。
The chapter 4, we mainly discuss the overlay algorithm of two-variable vector-valued rational interpolation and show formula of two-variable vector-valued contact interpolation.
应用推荐