实数范围内多项式的因式分解在初等数学的许多领域占有举足轻重的地位。
The divisor decompose of polynomial in real number field be important in the many field of elementary mathematics.
应注意在构造ARMA新息模型时,必须进行多项式矩阵的左素分解,才能得到正确的ARMA新息模型。
Notice that constructing the ARMA innovation model, a left co-prime factorization to a polynomial matrix must be performed, so that the ARMA innovation model can correctly be obtained.
本文首先从多项式分解角度给出一种FIR滤波器的并行结构。
At first, a parallel structure of the fir filter is presented based on polynomial decomposition method.
摘要求两个多项式的最大公因式,可以用辗转相除法及分解因式法。
Generally speaking division algorithm and factor resolution can be used to find the greatest common factor of the two multinomial.
给出了两两互素多项式下线性变换的核的直和分解,并应用于幂等矩阵(对合矩阵)的秩的等式证明中。
The direct sum decomposition of the addition of a linear transformation under the coprime polynomial was given, and it was used in the proof of some equality about the rank of idempotent matrix.
据此,本文建立了二元整系数多项式因式分解的一种理论,提出了一个完整的分解二元整系数多项式的算法。
According to this idea, this paper founds a theory and then obtains a complete algorithm for factoring bivariate polynomials with integral coefficients.
本文利用整系数多项式与正有理数的对应,将多项式因式分解通过对真分数序列筛选的办法求得因式。
Through the corresponding between integral coefficient polynomial and rational number, this paper obtains factorization from factorization of polynomial by the way of sieve in true fraction series.
这个算法还能很自然地推广成分解多元整系数多项式的算法。
This algorithm can be naturally generalized to be an algorithm for factoring multivariate polynomials with integral coefficients.
本文给出了有限域上单变元多项式分解的一种概率算法。
A probabilistic algorithm for factoring univariate polynomials over finite fields is presented.
利用待定系数法得出了三元二次多项式可进行因式分解的充要条件,并应用这个充要条件解决了两个具体问题。
In this paper a suffitient and necessary condition of factoring on the polynomial of three variables power two is obtained by using undefinite co efficient method.
利用待定系数法得出了三元二次多项式可进行因式分解的充要条件,并应用这个充要条件解决了两个具体问题。
In this paper a suffitient and necessary condition of factoring on the polynomial of three variables power two is obtained by using undefinite co efficient method.
应用推荐