类似于群分次环和群分次模的定义,定义了部分半群分次环和部分半群分次模。
Similar to group graded rings and modules, partial semigroup graded rings and modules are defined.
对一般群分次环建立了弱分次周期根的概念,证明它是一个分次特殊根,给出了它的分次模刻划,讨论了它与自反周期根的关系。
The weakly graded periodic radical concept for general group graded rings is established, the fact that it is a graded special radical is proved and its graded module characterization is presented.
再者,引进了分次半平坦模的概念,并有如下主要结果:环K是分次弱正则的当且仅当所有右K-模是分次半平坦的。
Next, the concept of graded semiflat module is introduced and proved that K is a group-graded weakly regular ring if and only if all right K-module is graded semiflat module.
同时对盟定义了盟模,并证明了对部分半群g,所有G -盟作成的范畴与所有G -分次环作成的范畴是同构的。
It is proved that for a partial semigroup g, the category of G-unions and the category of G-graded rings are isomorphic.
细分曲面存在的一个问题是随着细分次数的增多,网格的面片数迅速增长,巨大的数据量使得细分后的模难以进行其它处理。
One problem in subdivision surfaces is the number of facets grows exponentially with the level of subdivision. Subdivision schemes are cost intensive at higher levels of subdivision.
细分曲面存在的一个问题是随着细分次数的增多,网格的面片数迅速增长,巨大的数据量使得细分后的模难以进行其它处理。
One problem in subdivision surfaces is the number of facets grows exponentially with the level of subdivision. Subdivision schemes are cost intensive at higher levels of subdivision.
应用推荐